Mathematical proof for the Lagrangian function

Click For Summary
SUMMARY

The discussion centers on the mathematical proof of the Lagrangian function's dependence on velocity squared (v^2) under the assumptions of homogeneity of time and space, as presented in Landau's mechanics. The argument posits that if the Lagrangian function, denoted as ## \mathcal{L}(\vec{r}, \vec{\dot{r}}, t) ##, were to depend on position, it would contradict the requirement for a total derivative function ## \Omega(\vec{r}, t) ## to exist. Participants also seek proofs for temporal homogeneity and spatial isotropy, emphasizing the need for a rigorous mathematical framework to support these physical assumptions.

PREREQUISITES
  • Understanding of Lagrangian mechanics and the role of the Lagrangian function.
  • Familiarity with concepts of homogeneity and isotropy in physics.
  • Basic knowledge of calculus, particularly derivatives and total derivatives.
  • Proficiency in mathematical notation used in physics, such as vector notation and differential equations.
NEXT STEPS
  • Study the derivation of the Euler-Lagrange equation from the Lagrangian function.
  • Research proofs of temporal homogeneity in classical mechanics.
  • Explore mathematical formulations of spatial isotropy and their implications in physics.
  • Investigate the role of symmetries in determining the form of physical laws, particularly in Lagrangian mechanics.
USEFUL FOR

This discussion is beneficial for physicists, mathematicians, and students studying classical mechanics, particularly those interested in the foundational principles of Lagrangian dynamics and the implications of symmetry in physical laws.

Silver2007
Messages
7
Reaction score
2
TL;DR
In Landau's mechanics book, I saw them argue that due to the homogeneity of time and space, the isotropy of space leads to the Lagrangian function depending only on v^2. But i want a mathematical proof for the Lagrangian function independent of position q, time t and velocity vector.
In Landau's mechanics book, I saw them argue that due to the homogeneity of time and space, the isotropy of space leads to the Lagrangian function depending only on v^2. But i want a mathematical proof for the Lagrangian function independent of position q, time t and velocity vector.
Homogeneity of space:
We have ## \mathcal{L}(\vec{r}, \vec{\dot{r}}, t) ##, and ## \vec{r} \to \vec{r}' = \vec{r} + \vec{a} ##, because homogeneity of space so equations of motion should be the same. Therefore, the Lagrangian function differs only by a total derivative with respect to time ## \Omega(\vec{r}, t) ##:
$$
\mathcal{L}' = \mathcal{L} + \frac{d}{dt}\Omega(\vec{r}, t)
$$
We assume that ## a \ll 1 ##, and we get:
$$
\vec{a} \cdot \frac{\partial \mathcal{L}}{\partial \vec{r}} = \frac{d\Omega}{dt}
$$
At this point, I argue that if the Lagrangian function depends on position, it will be impossible to find an function ##\Omega(\vec{r}, t)## that satisfies the above equation, so the Lagrangian function cannot depend on position. Is my argument above reasonable and coherent?

And I need help with similar mathematical proofs for temporal homogeneity and spatial isotropy. Thanks
 
  • Like
Likes   Reactions: jbergman
Physics news on Phys.org
Silver2007 said:
And I need help with similar mathematical proofs for temporal homogeneity and spatial isotropy. Thanks
How do you suppose these could be proved mathematically? Space and time are related to the physical universe. You can only assume they are homogeneous and isotropic - or prove this from more fundamental physical assumptions. Mathematics would not be compromised if space were non-homogeneous. In fact, you always have to be prepared for evidence that, say, space is not homogeneous.
 
PeroK said:
How do you suppose these could be proved mathematically? Space and time are related to the physical universe. You can only assume they are homogeneous and isotropic - or prove this from more fundamental physical assumptions. Mathematics would not be compromised if space were non-homogeneous. In fact, you always have to be prepared for evidence that, say, space is not homogeneous.
Sure, but OP is asking under the assumption that the laws of physics are say homogeneous with respect to time and space, then how do you show that this constrains the Lagrangian to be only a function of velocity squared.
 
jbergman said:
Sure, but OP is asking under the assumption that the laws of physics are say homogeneous with respect to time and space, then how do you show that this constrains the Lagrangian to be only a function of velocity squared.
If you read my post, you'll see I answered his second question. Which was:

Silver2007 said:
And I need help with similar mathematical proofs for temporal homogeneity and spatial isotropy. Thanks
 
Silver2007 said:
TL;DR Summary: In Landau's mechanics book, I saw them argue that due to the homogeneity of time and space, the isotropy of space leads to the Lagrangian function depending only on v^2. But i want a mathematical proof for the Lagrangian function independent of position q, time t and velocity vector.

In Landau's mechanics book, I saw them argue that due to the homogeneity of time and space, the isotropy of space leads to the Lagrangian function depending only on v^2. But i want a mathematical proof for the Lagrangian function independent of position q, time t and velocity vector.
Homogeneity of space:
We have ## \mathcal{L}(\vec{r}, \vec{\dot{r}}, t) ##, and ## \vec{r} \to \vec{r}' = \vec{r} + \vec{a} ##, because homogeneity of space so equations of motion should be the same. Therefore, the Lagrangian function differs only by a total derivative with respect to time ## \Omega(\vec{r}, t) ##:
$$
\mathcal{L}' = \mathcal{L} + \frac{d}{dt}\Omega(\vec{r}, t)
$$
We assume that ## a \ll 1 ##, and we get:
$$
\vec{a} \cdot \frac{\partial \mathcal{L}}{\partial \vec{r}} = \frac{d\Omega}{dt}
$$
At this point, I argue that if the Lagrangian function depends on position, it will be impossible to find an function ##\Omega(\vec{r}, t)## that satisfies the above equation, so the Lagrangian function cannot depend on position. Is my argument above reasonable and coherent?

And I need help with similar mathematical proofs for temporal homogeneity and spatial isotropy. Thanks
What about something like##\Omega(\vec{r}, t)=\vec{r} ^2##?

I suggest proving it first without the total derivative term. To prove there isn't a total derivative difference is harder and I am not sure it is true. I believe you would have to at least use multiple symmetries to show it.
 

Similar threads

Replies
6
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
575
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K