Mathematical Techniques for Solving the Definite Integral Challenge

Click For Summary

Discussion Overview

The discussion revolves around the evaluation of the definite integral $$\int_0^{\pi/2} \tan(x)\ln(\sin(x))\,dx$$. Participants explore various mathematical techniques and approaches to solve this integral, including the use of special functions like the Gamma function and series expansions.

Discussion Character

  • Technical explanation, Mathematical reasoning, Debate/contested

Main Points Raised

  • One participant presents a method involving differentiation with respect to parameters in the integral, leading to a result expressed in terms of the digamma function.
  • Another participant suggests that the same integral can be approached using a substitution and a known identity involving logarithmic integrals, arriving at a similar result.
  • Some participants express interest in exploring simpler or more elementary methods to solve the integral.
  • There is acknowledgment of the correctness of the presented solutions, but also a suggestion that alternative methods may exist.
  • One participant expresses concern about their current level of understanding regarding advanced functions like the Beta and Gamma functions.

Areas of Agreement / Disagreement

While some participants agree on the correctness of the solutions provided, there is no consensus on the simplest or most elementary method to solve the integral. Multiple approaches are discussed, and the conversation remains open-ended regarding the exploration of alternative techniques.

Contextual Notes

Participants reference specific mathematical identities and functions, but the discussion does not resolve the potential limitations or assumptions inherent in the methods used. The exploration of different approaches highlights the complexity of the integral without settling on a definitive solution.

Saitama
Messages
4,244
Reaction score
93
Compute:
$$\int_0^{\pi/2} \tan(x)\ln(\sin(x))\,dx$$
 
Physics news on Phys.org
[sp]Start by

$$\int^{\frac{\pi}{2}}_0 \sin^{2x-1}(\phi)\cos^{2y-1}(\phi)\, d\phi = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$$

Hence we have by differentiation w.r.t to $x$

$$\int^{\frac{\pi}{2}}_0 \sin^{2x-1}(\phi)\cos^{2y-1}(\phi)\, \log(\sin(\phi)) d\phi = \frac{\Gamma(x)\Gamma(y)(\psi_0(x)-\psi_0(x+y))}{\Gamma(x+y)}$$Putting $$x=1$$ we have

$$\int^{\frac{\pi}{2}}_0 \sin(\phi)\cos^{2y-1}(\phi)\, \log(\sin(\phi)) d\phi = \frac{\Gamma(y)(\psi_0(1)-\psi_0(1+y))}{\Gamma(1+y)} = \frac{\psi_0(1)-\psi_0(1+y)}{y}$$

where I used that $$\Gamma (1+z)= z\Gamma(z)$$

Taking the limit as $y \to 0 $ we have

$$\int^{\frac{\pi}{2}}_0 \tan(\phi) \log(\sin(\phi)) d\phi= -\lim_{y \to 0}\frac{\psi_0(1+y)-\psi_0(1)}{y} = - \psi_1(1)=\frac{-\pi^2}{24}$$

Since $$\frac{d}{dz}\psi_0(z)=\psi_1(z)=\sum_{n\geq 1}\frac{1}{(n+z)^2}$$

[/sp]
 
ZaidAlyafey said:
[sp]Start by

$$\int^{\frac{\pi}{2}}_0 \sin^{2x-1}(\phi)\cos^{2y-1}(\phi)\, d\phi = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$$

Hence we have by differentiation w.r.t to $x$

$$\int^{\frac{\pi}{2}}_0 \sin^{2x-1}(\phi)\cos^{2y-1}(\phi)\, \log(\sin(\phi)) d\phi = \frac{\Gamma(x)\Gamma(y)(\psi_0(x)-\psi_0(x+y))}{\Gamma(x+y)}$$Putting $$x=1$$ we have

$$\int^{\frac{\pi}{2}}_0 \sin(\phi)\cos^{2y-1}(\phi)\, \log(\sin(\phi)) d\phi = \frac{\Gamma(y)(\psi_0(1)-\psi_0(1+y))}{\Gamma(1+y)} = \frac{\psi_0(1)-\psi_0(1+y)}{y}$$

where I used that $$\Gamma (1+z)= z\Gamma(z)$$

Taking the limit as $y \to 0 $ we have

$$\int^{\frac{\pi}{2}}_0 \tan(\phi) \log(\sin(\phi)) d\phi= -\lim_{y \to 0}\frac{\psi_0(1+y)-\psi_0(1)}{y} = - \psi_1(1)=\frac{-\pi^2}{24}$$

Since $$\frac{d}{dz}\psi_0(z)=\psi_1(z)=\sum_{n\geq 1}\frac{1}{(n+z)^2}$$

[/sp]

Thanks ZaidAlyafey for your participation, your answer is correct. :)

...but there exists a more elementary and much simpler method, can you figure it out? ;)
 
Pranav said:
Thanks ZaidAlyafey for your participation, your answer is correct. :)

...but there exists a more elementary and much simpler method, can you figure it out? ;)

I am sure there is but since I noticed your interest in integral and series, I wanted to give you another way of solving the question.
 
ZaidAlyafey said:
I am sure there is but since I noticed your interest in integral and series, I wanted to give you another way of solving the question.

Thanks but currently, that kind of stuff is way above my level and I wonder if I will ever come across those Beta and Gamma functions. :o
 
Pranav said:
Compute:
$$\int_0^{\pi/2} \tan(x)\ln(\sin(x))\,dx$$

[sp]Proceeding as in...

http://mathhelpboards.com/math-notes-49/integrals-natural-logarithm-5286.html

... You can use the identity...

$\displaystyle \int_{0}^{1} x^{n}\ \ln x\ d x = - \frac{1}{(n+1)^{2}}\ (1)$

With the substitution $\sin x = u$ and taking into account (1) the integral becomes...

$\displaystyle \int_0^{\pi/2} \tan x\ \ln \sin x\ d x = \int_{0}^{1} \frac{u}{1 - u^{2}}\ \ln u\ d u = \sum_{n = 0}^{\infty} \int_{0}^{1} u^{2 n + 1}\ \ln u\ d u = - \sum_{n = 0}^{\infty} \frac{1}{(2 n + 2)^{2}} = - \frac{\pi^{2}}{24}\ (2)$ [/sp]

Kind regards

$\chi$ $\sigma$
 
chisigma said:
[sp]Proceeding as in...

http://mathhelpboards.com/math-notes-49/integrals-natural-logarithm-5286.html

... You can use the identity...

$\displaystyle \int_{0}^{1} x^{n}\ \ln x\ d x = - \frac{1}{(n+1)^{2}}\ (1)$

With the substitution $\sin x = u$ and taking into account (1) the integral becomes...

$\displaystyle \int_0^{\pi/2} \tan x\ \ln \sin x\ d x = \int_{0}^{1} \frac{u}{1 - u^{2}}\ \ln u\ d u = \sum_{n = 0}^{\infty} \int_{0}^{1} u^{2 n + 1}\ \ln u\ d u = - \sum_{n = 0}^{\infty} \frac{1}{(2 n + 2)^{2}} = - \frac{\pi^{2}}{24}\ (2)$ [/sp]

Kind regards

$\chi$ $\sigma$

Great! (Yes)

I took a slightly different approach:
Use the substitution $\cos x=u$ to get,
$$\int_0^{1} \frac{\ln(\sqrt{1-u^2})}{u}\,du=-\int_0^1 \frac{1}{2u}\left(\sum_{k=1}^{\infty} \frac{u^{2k}}{k}\right)\,du=-\sum_{k=1}^{\infty} \int_0^1 \frac{u^{2k-1}}{2k}\,du$$
$$=-\frac{1}{4}\sum_{k=1}^{\infty}\frac{1}{k^2}=-\frac{\zeta(2)}{4}$$
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K