Undergrad Matrix Representation of Linear Transformation

Click For Summary
The discussion centers on understanding the matrix representation of a linear transformation, specifically how the columns of the matrix correspond to the images of basis vectors under the transformation. The matrix A is defined as containing the images of basis vectors of vector space V expressed in the coordinates of basis C. The transformation T can be fully characterized by knowing the images of the basis vectors, as any vector in V can be expressed as a linear combination of these basis vectors. The conversation emphasizes the importance of working through concrete examples with actual numbers to clarify the symbolic calculations involved. Overall, grasping this concept is crucial for understanding linear transformations and their matrix representations.
KT KIM
Messages
24
Reaction score
0
la_1.png


This is where I am stuck. I studied ordered basis and coordinates vector previous to this.
of course I studied vector space, basis, linear... etc too,
However I can't understand just this part. (maybe this whole part)
Especially
la_2.png

this one which says [[T(b1)]]c...[[T(bn)]]c be a columns of matrix.

Can anyone please explain me how this works? I've stuck at here too long.
 
Physics news on Phys.org
KT KIM said:
la_1.png


This is where I am stuck. I studied ordered basis and coordinates vector previous to this.
of course I studied vector space, basis, linear... etc too,
However I can't understand just this part. (maybe this whole part)
Especially
la_2.png

this one which says [[T(b1)]]c...[[T(bn)]]c be a columns of matrix.

Can anyone please explain me how this works? I've stuck at here too long.

This is how ##A## is defined: ("Define ##A## to be ...") the images of basis vectors of ##V## under the transformation ##T## expressed in coordinates of ##C## with respect to the given bases in ##C## as column vectors of ##A##.

The author then shows that the so defined ##A## describes / is in accordance to / concurs / fully determines (whatever) the entire transformation ##T##, as it maps any vector ##v## when expressed in the coordinates of ##V## with respect to the basis ##\mathit{B}## (RHS) onto the image ##T(v)## expressed in the coordinates of ##W## with respect to the basis ##\mathit{C}## (LHS).

EDIT: For short: The matrix ##A## of ##T## can be written as all images of basis vectors of ##V## arranged in columns.
 
  • Like
Likes KT KIM
Any vector ##v\in V## can be uniquely written as a linear combination of ##\{b_1,\ldots,b_n\}##, i.e. ##v = \sum_{i=1}^n \beta_i b_i##. Operating ##T## on ##v##,
$$
Tv = \sum_{i=1}^n \beta_i (Tb_i)
$$
The thing inside the bracket in right side above implies that the action of ##T## on any vector in ##V## is going to be completely characterized if you know ##Tb_i## for ##i=1,\ldots,n##.

Now suppose ##A## be the matrix representation of ##T##. In ##k^n##, ##b_1 = (1,0,...,0)^T##, ##b_2 = (0,1,...,0)^T##, and so on. If you multiply ##A## with ##b_1= (1,0,...,0)^T##, you will get a vector in ##k^m## which equals the first column of ##A##, right? Thus the first column in ##A## equals ##T## applied to ##b_1## and written in ##\mathcal{C}## basis, which is ##[[T(b_1)]]_\mathcal{C}##. The similar argument goes for the other columns of ##A##.
 
  • Like
Likes KT KIM
I strongly suggest you stop here and consider some simple examples with actual numbers. Nothing makes a type of symbolic calculation clearer the first time you encounter it than working through concrete examples.

Use a 2-dimensional vector space over the real numbers. Make up simple numbers that take the place of the abstract symbols in the textbook or notes you quoted for us.

Do the explicit calculation separately for each of the two things that the quote claims are equal. This will very much get you used to this kind of calculation and help you see what is going on.
 
  • Like
Likes KT KIM and jasonRF
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 12 ·
Replies
12
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K