Maximize P(x): Optimizing x to Reach Maximum Value

Click For Summary
SUMMARY

The maximum value of the function \( P(x) = \frac{x(\sqrt{100-x^2}+\sqrt{81-x^2})}{2} \) occurs at \( x = \frac{90}{\sqrt{181}} \), yielding \( P\left(\frac{90}{\sqrt{181}}\right) = 45 \). The analysis involves finding the derivative \( P'(x) \) and determining the intervals of increase and decrease. The domain of \( P(x) \) is established as \( [-9, 9] \), with critical points identified through the derivative test.

PREREQUISITES
  • Understanding of calculus, specifically differentiation and critical points
  • Familiarity with square root functions and their properties
  • Knowledge of interval notation and monotonicity
  • Ability to solve quadratic equations and inequalities
NEXT STEPS
  • Study the application of the first derivative test in optimization problems
  • Learn about the properties of square root functions in calculus
  • Explore the concept of concavity and the second derivative test
  • Investigate similar optimization problems involving trigonometric functions
USEFUL FOR

Students and professionals in mathematics, particularly those focusing on calculus and optimization techniques, as well as educators seeking examples of derivative applications in real-world scenarios.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the maximum of $P(x)=\dfrac{x(\sqrt{100-x^2}+\sqrt{81-x^2})}{2}$.
 
Physics news on Phys.org
anemone said:
Find the maximum of $P(x)=\dfrac{x(\sqrt{100-x^2}+\sqrt{81-x^2})}{2}$.

$P(x)=\dfrac{x(\sqrt{100-x^2}+\sqrt{81-x^2})}{2} \\ \Rightarrow P'(x)=\dfrac{\sqrt{100-x^2}+\sqrt{81-x^2}}{2}+\dfrac{x}{2} \left ( \frac{-x}{ \sqrt{100-x^2}}+\frac{-x}{ \sqrt{81-x^2}} \right )=\dfrac{\sqrt{100-x^2}+\sqrt{81-x^2}}{2}-\dfrac{x^2}{2} \left ( \frac{1}{ \sqrt{100-x^2}}+\frac{1}{ \sqrt{81-x^2}} \right )=\dfrac{\sqrt{100-x^2}+\sqrt{81-x^2}}{2}-\dfrac{x^2}{2} \left ( \frac{\sqrt{81-x^2}+\sqrt{100-x^2}}{ \sqrt{100-x^2} \sqrt{81-x^2}} \right )= \left ( \dfrac{\sqrt{100-x^2}+\sqrt{81-x^2}}{2} \right ) \left ( 1-\dfrac{x^2}{\sqrt{100-x^2} \sqrt{81-x^2}} \right )$

$P'(x)=0 \Rightarrow \dfrac{\sqrt{100-x^2}+\sqrt{81-x^2}}{2}=0 \text{ or } 1-\dfrac{x^2}{\sqrt{100-x^2} \sqrt{81-x^2}}=0 \Rightarrow $

  • $\dfrac{\sqrt{100-x^2}+\sqrt{81-x^2}}{2}=0 \Rightarrow \sqrt{100-x^2}+\sqrt{81-x^2}=0 \Rightarrow \sqrt{100-x^2}=-\sqrt{81-x^2}$

    That cannot be true.
  • $1-\dfrac{x^2}{\sqrt{100-x^2} \sqrt{81-x^2}}=0 \Rightarrow \dfrac{x^2}{\sqrt{100-x^2} \sqrt{81-x^2}}=1 \Rightarrow \sqrt{100-x^2} \sqrt{81-x^2}=x^2 \Rightarrow (100-x^2) (81-x^2)=x^4 \Rightarrow 8100-100x^2-81x^2+x^4=x^4 \Rightarrow 181x^2=8100 \Rightarrow x^2=\frac{8100}{181} \Rightarrow x= \pm \frac{90}{\sqrt{181}}$


$100-x^2 \geq 0 \Rightarrow x^2 \leq 100 \Rightarrow -10 \leq x \leq 10$
$81-x^2 \geq 0 \Rightarrow x^2 \leq 81 \Rightarrow -9 \leq x \leq 9$
The domain of $P(x)$ is $[-9,9]$.

$$\left ( -9, -\frac{90}{\sqrt{181}} \right ):P'(x)<0$$
$$\left [-\frac{90}{\sqrt{181}}, \frac{90}{\sqrt{181}} \right ]: P'(x)>0$$
$$\left ( \frac{90}{\sqrt{181}}, 9 \right ):P'(x)<0$$

So, $P(x)$ is decreasing at $\left ( -9, -\frac{90}{\sqrt{181}} \right )$, increasing at $\left [-\frac{90}{\sqrt{181}}, \frac{90}{\sqrt{181}} \right ]$ and decreasing at $\left ( \frac{90}{\sqrt{181}}, 9 \right )$.

So $P(x)$ achieves its maximum at $x=\frac{90}{\sqrt{181}}$, which is equal to $P \left ( \frac{90}{\sqrt{181}} \right )=\dfrac{\frac{90}{\sqrt{181}}\left (\sqrt{100-\left ( \frac{90}{\sqrt{181}} \right )^2}+\sqrt{81-\left ( \frac{90}{\sqrt{181}} \right )^2} \right )}{2}=\frac{45}{\sqrt{181}} \left ( \sqrt{\frac{18100-8100}{181}}+\sqrt{\frac{81 \cdot 181-8100}{181}} \right )=\frac{45}{181} \left ( \sqrt{10000}+\sqrt{6561} \right )=\frac{45}{181} \left ( 100+81 \right )=\frac{45 \cdot 181}{181} =45$
 
Thanks for participating, mathmari and your answer is correct and the solution is nicely written, well done!

I'll show one quick solution to this problem and I hope you will be benefited from it:

If we look at it geometrically, we would see that the function of $P(x)=\dfrac{x(\sqrt{100-x^2}-\sqrt{81-x^2})}{2}$ is actually the formula that defines the area of a triangle with sides 10 and 9, as shown as follows:

View attachment 2875
So, the area of that triangle is maximum when it is a right angled triangle with its base as 10 and height as 9, hence, $P(x)_{\text{max}}=\dfrac{1}{2}(9)(10)=45$.
 

Attachments

  • Optimization Challenge.JPG
    Optimization Challenge.JPG
    8 KB · Views: 95

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
1K