MHB Maximize P(x): Optimizing x to Reach Maximum Value

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the maximum of $P(x)=\dfrac{x(\sqrt{100-x^2}+\sqrt{81-x^2})}{2}$.
 
Mathematics news on Phys.org
anemone said:
Find the maximum of $P(x)=\dfrac{x(\sqrt{100-x^2}+\sqrt{81-x^2})}{2}$.

$P(x)=\dfrac{x(\sqrt{100-x^2}+\sqrt{81-x^2})}{2} \\ \Rightarrow P'(x)=\dfrac{\sqrt{100-x^2}+\sqrt{81-x^2}}{2}+\dfrac{x}{2} \left ( \frac{-x}{ \sqrt{100-x^2}}+\frac{-x}{ \sqrt{81-x^2}} \right )=\dfrac{\sqrt{100-x^2}+\sqrt{81-x^2}}{2}-\dfrac{x^2}{2} \left ( \frac{1}{ \sqrt{100-x^2}}+\frac{1}{ \sqrt{81-x^2}} \right )=\dfrac{\sqrt{100-x^2}+\sqrt{81-x^2}}{2}-\dfrac{x^2}{2} \left ( \frac{\sqrt{81-x^2}+\sqrt{100-x^2}}{ \sqrt{100-x^2} \sqrt{81-x^2}} \right )= \left ( \dfrac{\sqrt{100-x^2}+\sqrt{81-x^2}}{2} \right ) \left ( 1-\dfrac{x^2}{\sqrt{100-x^2} \sqrt{81-x^2}} \right )$

$P'(x)=0 \Rightarrow \dfrac{\sqrt{100-x^2}+\sqrt{81-x^2}}{2}=0 \text{ or } 1-\dfrac{x^2}{\sqrt{100-x^2} \sqrt{81-x^2}}=0 \Rightarrow $

  • $\dfrac{\sqrt{100-x^2}+\sqrt{81-x^2}}{2}=0 \Rightarrow \sqrt{100-x^2}+\sqrt{81-x^2}=0 \Rightarrow \sqrt{100-x^2}=-\sqrt{81-x^2}$

    That cannot be true.
  • $1-\dfrac{x^2}{\sqrt{100-x^2} \sqrt{81-x^2}}=0 \Rightarrow \dfrac{x^2}{\sqrt{100-x^2} \sqrt{81-x^2}}=1 \Rightarrow \sqrt{100-x^2} \sqrt{81-x^2}=x^2 \Rightarrow (100-x^2) (81-x^2)=x^4 \Rightarrow 8100-100x^2-81x^2+x^4=x^4 \Rightarrow 181x^2=8100 \Rightarrow x^2=\frac{8100}{181} \Rightarrow x= \pm \frac{90}{\sqrt{181}}$


$100-x^2 \geq 0 \Rightarrow x^2 \leq 100 \Rightarrow -10 \leq x \leq 10$
$81-x^2 \geq 0 \Rightarrow x^2 \leq 81 \Rightarrow -9 \leq x \leq 9$
The domain of $P(x)$ is $[-9,9]$.

$$\left ( -9, -\frac{90}{\sqrt{181}} \right ):P'(x)<0$$
$$\left [-\frac{90}{\sqrt{181}}, \frac{90}{\sqrt{181}} \right ]: P'(x)>0$$
$$\left ( \frac{90}{\sqrt{181}}, 9 \right ):P'(x)<0$$

So, $P(x)$ is decreasing at $\left ( -9, -\frac{90}{\sqrt{181}} \right )$, increasing at $\left [-\frac{90}{\sqrt{181}}, \frac{90}{\sqrt{181}} \right ]$ and decreasing at $\left ( \frac{90}{\sqrt{181}}, 9 \right )$.

So $P(x)$ achieves its maximum at $x=\frac{90}{\sqrt{181}}$, which is equal to $P \left ( \frac{90}{\sqrt{181}} \right )=\dfrac{\frac{90}{\sqrt{181}}\left (\sqrt{100-\left ( \frac{90}{\sqrt{181}} \right )^2}+\sqrt{81-\left ( \frac{90}{\sqrt{181}} \right )^2} \right )}{2}=\frac{45}{\sqrt{181}} \left ( \sqrt{\frac{18100-8100}{181}}+\sqrt{\frac{81 \cdot 181-8100}{181}} \right )=\frac{45}{181} \left ( \sqrt{10000}+\sqrt{6561} \right )=\frac{45}{181} \left ( 100+81 \right )=\frac{45 \cdot 181}{181} =45$
 
Thanks for participating, mathmari and your answer is correct and the solution is nicely written, well done!

I'll show one quick solution to this problem and I hope you will be benefited from it:

If we look at it geometrically, we would see that the function of $P(x)=\dfrac{x(\sqrt{100-x^2}-\sqrt{81-x^2})}{2}$ is actually the formula that defines the area of a triangle with sides 10 and 9, as shown as follows:

View attachment 2875
So, the area of that triangle is maximum when it is a right angled triangle with its base as 10 and height as 9, hence, $P(x)_{\text{max}}=\dfrac{1}{2}(9)(10)=45$.
 

Attachments

  • Optimization Challenge.JPG
    Optimization Challenge.JPG
    8 KB · Views: 86
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top