MHB Maximizing $a+b$ given Quadratic Constraint

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the maximum of $a+b$, given $a^2-1+b^2-3b=0$.
 
Mathematics news on Phys.org
My solution:

Using Lagrange multipliers, we obtain:

$$1=\lambda(2a)$$

$$1=\lambda(2b-3)$$

This implies:

$$a=b-\frac{3}{2}$$

Substituting into the constraint, we obtain:

$$\left(b-\frac{3}{2} \right)^2-1+b^2-3b=0$$

$$2b^2-6b+\frac{5}{4}=0$$

$$8b^2-24b+5=0$$

$$b=\frac{6\pm\sqrt{26}}{4}$$

Hence:

$$a=\frac{\pm\sqrt{26}}{4}$$

And so the maximum of the objective function $f(a,b)=a+b$ is:

$$f_{\max}=f\left(\frac{\sqrt{26}}{4},\frac{6+\sqrt{26}}{4} \right)=\frac{3+\sqrt{26}}{2}$$
 
MarkFL said:
My solution:

Using Lagrange multipliers, we obtain:

$$1=\lambda(2a)$$

$$1=\lambda(2b-3)$$

This implies:

$$a=b-\frac{3}{2}$$

Substituting into the constraint, we obtain:

$$\left(b-\frac{3}{2} \right)^2-1+b^2-3b=0$$

$$2b^2-6b+\frac{5}{4}=0$$

$$8b^2-24b+5=0$$

$$b=\frac{6\pm\sqrt{26}}{4}$$

Hence:

$$a=\frac{\pm\sqrt{26}}{4}$$

And so the maximum of the objective function $f(a,b)=a+b$ is:

$$f_{\max}=f\left(\frac{\sqrt{26}}{4},\frac{6+\sqrt{26}}{4} \right)=\frac{3+\sqrt{26}}{2}$$

Bravo, my dearest admin!(Party) And thanks for participating! :cool:
 
Solution suggested by other:

$a^2-1+b^2-3b=0$ can be rewritten as $a^2+\left( b-\dfrac{3}{2} \right)^2=\dfrac{13}{4}$ and this represents an equation of a circle center at $\left( 0,\,\dfrac{3}{2} \right)$ with radius $\dfrac{\sqrt{13}}{2}$ and also its parametric equation as $a=\dfrac{\sqrt{13}}{2}\cos \theta$ and $b=\dfrac{\sqrt{13}}{2}\sin \theta+\dfrac{3}{2}$.

Thus $a+b=\dfrac{3}{2}+\dfrac{\sqrt{13}}{2}(\cos \theta+\sin \theta)=\dfrac{3}{2}+\dfrac{\sqrt{13}}{2}(\sqrt{2}\sin (\theta+45^{\circ})$ which is maximized when $\theta=45^{\circ}$ and gives the maximum of $a+b$ as $\dfrac{\sqrt{26}+3}{2}$.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top