MHB Maximizing Gamma with Lagrange Multipliers

Click For Summary
To maximize gamma using Lagrange multipliers, the objective function is defined as gamma, subject to two constraints involving variables a, h, r, v, gamma, and mu. The discussion highlights the need for two multipliers, typically lambda and mu, but suggests using a different variable, beta, for the second multiplier since mu is a variable in the problem. The equations derived from the application of Lagrange multipliers lead to a system that needs to be analyzed for implications on the variables. One participant expresses relief at finding an easier method to approach the problem, indicating the complexity of the initial formulation. The conversation emphasizes the intricacies of applying Lagrange multipliers to maximize gamma effectively.
Dustinsfl
Messages
2,217
Reaction score
5
Given the equations
$$
rv\cos\gamma - h = 0,\quad \frac{v^2}{2} - \frac{\mu}{r} + \frac{\mu}{2a} = 0
$$
I want to maximize gamma.
Do I have to solve for gamma in the first equation to use the method of Lagrange multipliers, or if not, how would I do this in the current form?
 
Physics news on Phys.org
Re: Langrange multipliers

If I understand correctly, we have 6 variables, 2 constraints, and the objective function.

The objective function is:

$f(a,h,r,v,\gamma,\mu)=\gamma$

subject to the constraints:

$g(a,h,r,v,\gamma,\mu)=rv\cos(\gamma)-h=0$

$h(a,h,r,v,\gamma,\mu)=\dfrac{v^2}{2}-\dfrac{\mu}{r}+\dfrac{\mu}{2a}=0$

Normally, we use a multiplier for each constraint, and $\lambda$ and $\mu$ are used, but since $\mu$ is one of our variables, would may choose another, such as $\beta$ to be the second multiplier.

So, what we would wind up with is:

$\displaystyle 0=\lambda(0)+\beta\left(-\frac{\mu}{2a^2} \right)$

$\displaystyle 0=\lambda(-1)+\beta(0)$

$\displaystyle 0=\lambda(v\cos(\gamma))+\beta\left(\frac{\mu}{r^2} \right)$

$\displaystyle 0=\lambda(r\cos(\gamma))+\beta(v)$

$\displaystyle 1=\lambda(-rv\sin(\gamma))+\beta(0)$

$\displaystyle 0=\lambda(0)+\beta\left(-\frac{1}{r}+\frac{1}{2a} \right)$

Now, from this system, you need to draw out implications regarding the variables.
 
Re: Langrange multipliers

I found an easier way to do it though.
 
Re: Langrange multipliers

Good, because what I posted did not look like any fun at all! (Yes)
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

Replies
3
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
9
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
7
Views
2K