Hi. I need someone to look at my attempt at a solution, and guide me towards the correct way to solving this. Thanks.(adsbygoogle = window.adsbygoogle || []).push({});

1. The problem statement, all variables and given/known data

Determine the maximum value of [ilatex]|3z^2 - 1|[/ilatex] in the closed disk [ilatex]|z| \leq 1[/ilatex] in the complex plane. For what values of z does the maximum occur?

The attempt at a solution

There is a theorem that says that all maximum values of an analytic function in a disc occurs at the bound, so the max values will be on some point on the circle [ilatex]|z|=1[/ilatex]. We can easily see that the maximizing points are [ilatex]z = \pm i[/ilatex], and in those cases we get [ilatex]|3(i)^2 - 1| = |-3-1| = |-4| = 4[/ilatex].

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Maximum value for a analytic function

**Physics Forums | Science Articles, Homework Help, Discussion**