Maxwell theory invariant under dual field strength tensor application

Click For Summary

Discussion Overview

The discussion revolves around the implications of adding a term involving the dual field strength tensor to the Lagrangian density in classical field theory. Participants explore the effects on the equations of motion (EOM) and the validity of various derivations related to this addition.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant asserts that adding the term \( F_{\alpha \beta} (*F)^{\alpha \beta} \) does not change the EOM, as it corresponds to a total derivative term, but expresses confusion over their explicit derivation yielding a non-zero result.
  • Another participant provides a derivation showing that the variation of the action leads to an identically fulfilled condition, suggesting that the EOMs are satisfied for all \( A_{\mu} \).
  • A subsequent reply seeks clarification on why the initial participant's approach, which leads to a non-zero term, is incorrect, despite understanding the alternative derivation presented.
  • Further elaboration on the Lagrangian form is provided, leading to a conclusion that the Euler-Lagrange equations are satisfied, reinforcing the idea that the added term does not contribute to the EOM.

Areas of Agreement / Disagreement

Participants do not reach a consensus, as there is disagreement regarding the correctness of the initial derivation and the implications of the added term on the EOM. Multiple viewpoints and approaches are presented without resolution.

Contextual Notes

Some participants express uncertainty regarding the manipulation of the Levi Civita tensor and the implications of their calculations on the EOM. The discussion highlights the complexity of the mathematical steps involved and the assumptions made in the derivations.

Mark99
Messages
2
Reaction score
0
TL;DR
Dual field strength tensor and EOM
Hello everybody! I know in classical field theory adding in the Lagrangian density a term of the form Fαβ (*F)αβ (where by * we denote the dual of the field strength tensor) does not change the EOM, since this corresponds to adding a total derivative term to the action. However when computing the EOMs explicitly through ∂μ(∂L/∂∂μAυ)-∂L/∂Aυ=0, I do not find this to be true.
In particular I get ∂(Fαβ (*F)αβ)/∂∂μAν=4(*Fμν), when the result should be zero. I suppose I am not managing the Levi Civita tensor properly, but I do not understand my mistake. Is there someone who can do this derivation explicitly and show it is zero?
Thank you in advance.
 
Physics news on Phys.org
You have the additional term
$$L=F_{\alpha \beta} (^*F)^{\alpha \beta} = F_{\alpha \beta} F_{\gamma \delta} \epsilon^{\alpha \beta \gamma \delta}.$$
The variation is
$$\delta L = 2 \delta F_{\alpha \beta} F_{\gamma \delta} \epsilon^{\alpha \beta \gamma \delta} = 8 \partial_{\alpha} \delta A_{\beta} \partial_{\gamma} A_{\delta} \epsilon^{\alpha \beta \gamma \delta}.$$
Thus, integrating by parts
$$\delta S=\int \mathrm{d}^4 x \delta L = -8 \int \mathrm{d}^4 x \delta A_{\beta} \partial_{\alpha} \partial_{\gamma} A_{\delta} \epsilon^{\alpha \beta \gamma \delta} \equiv 0.$$
Thus ##\delta S=0## is identically fulfilled, and that's equivalent for the Euler-Lagrange equations being fullfilled for all ##A_{\mu}##.
 
  • Like
Likes   Reactions: Dale and topsquark
vanhees71 said:
You have the additional term
$$L=F_{\alpha \beta} (^*F)^{\alpha \beta} = F_{\alpha \beta} F_{\gamma \delta} \epsilon^{\alpha \beta \gamma \delta}.$$
The variation is
$$\delta L = 2 \delta F_{\alpha \beta} F_{\gamma \delta} \epsilon^{\alpha \beta \gamma \delta} = 8 \partial_{\alpha} \delta A_{\beta} \partial_{\gamma} A_{\delta} \epsilon^{\alpha \beta \gamma \delta}.$$
Thus, integrating by parts
$$\delta S=\int \mathrm{d}^4 x \delta L = -8 \int \mathrm{d}^4 x \delta A_{\beta} \partial_{\alpha} \partial_{\gamma} A_{\delta} \epsilon^{\alpha \beta \gamma \delta} \equiv 0.$$
Thus ##\delta S=0## is identically fulfilled, and that's equivalent for the Euler-Lagrange equations being fullfilled for all ##A_{\mu}##.
Thank you for your answer! I understand that. Is it possibile to get the same result showing that the term ∂(Fαβ (*F)αβ)/∂∂μAν in the equations of motion Is zero? Because I understand why your way Is correct but I do not understand why mine Is not
 
You can write it as
$$L=4 (\partial_{\alpha} A_{\beta})(\partial_{\gamma} A_{\delta}) \epsilon^{\alpha \beta \gamma \delta}.$$
Then
$$\frac{\partial L}{\partial (\partial_{\mu} A_{\nu})} =8 \delta_{\mu \alpha} \delta_{\nu \beta} (\partial_{\gamma} A_{\delta}) \epsilon^{\alpha \beta \gamma \delta}= 8 (\partial_{\gamma} A_{\delta}) \epsilon^{\mu \nu \gamma \delta}.$$
Then contracting with ##\partial_{\mu}## gives
$$\partial_{\mu} \frac{\partial L}{\partial (\partial_{\mu} A_{\nu})} = 8 \partial_{\mu} \partial_{\gamma} A_{\delta} \epsilon^{\mu \nu \gamma \delta}=0.$$
Since ##\partial L/\partial A^{\mu}=0##, that shows that the Euler-Lagrange equations are identically fulfilled, i.e., this term in the Lagrangian doesn't contribute to the equations of motion.
 
  • Like
Likes   Reactions: LittleSchwinger, topsquark and dextercioby

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
811
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 13 ·
Replies
13
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 24 ·
Replies
24
Views
3K