A Maxwell theory invariant under dual field strength tensor application

Click For Summary
The discussion centers on the application of the dual field strength tensor in Maxwell's theory and its impact on the equations of motion (EOM). A participant initially claims that adding a term involving the dual tensor does not alter the EOM, but encounters a discrepancy when deriving the equations explicitly. Another contributor clarifies that the additional term leads to a variation that integrates to zero, confirming that the Euler-Lagrange equations remain satisfied. The conversation emphasizes the proper handling of the Levi-Civita tensor and the importance of integration by parts in demonstrating that the term does not contribute to the EOM. Ultimately, the discussion resolves the confusion about the derivation and reaffirms the invariance of the theory under the dual tensor application.
Mark99
Messages
2
Reaction score
0
TL;DR
Dual field strength tensor and EOM
Hello everybody! I know in classical field theory adding in the Lagrangian density a term of the form Fαβ (*F)αβ (where by * we denote the dual of the field strength tensor) does not change the EOM, since this corresponds to adding a total derivative term to the action. However when computing the EOMs explicitly through ∂μ(∂L/∂∂μAυ)-∂L/∂Aυ=0, I do not find this to be true.
In particular I get ∂(Fαβ (*F)αβ)/∂∂μAν=4(*Fμν), when the result should be zero. I suppose I am not managing the Levi Civita tensor properly, but I do not understand my mistake. Is there someone who can do this derivation explicitly and show it is zero?
Thank you in advance.
 
Physics news on Phys.org
You have the additional term
$$L=F_{\alpha \beta} (^*F)^{\alpha \beta} = F_{\alpha \beta} F_{\gamma \delta} \epsilon^{\alpha \beta \gamma \delta}.$$
The variation is
$$\delta L = 2 \delta F_{\alpha \beta} F_{\gamma \delta} \epsilon^{\alpha \beta \gamma \delta} = 8 \partial_{\alpha} \delta A_{\beta} \partial_{\gamma} A_{\delta} \epsilon^{\alpha \beta \gamma \delta}.$$
Thus, integrating by parts
$$\delta S=\int \mathrm{d}^4 x \delta L = -8 \int \mathrm{d}^4 x \delta A_{\beta} \partial_{\alpha} \partial_{\gamma} A_{\delta} \epsilon^{\alpha \beta \gamma \delta} \equiv 0.$$
Thus ##\delta S=0## is identically fulfilled, and that's equivalent for the Euler-Lagrange equations being fullfilled for all ##A_{\mu}##.
 
  • Like
Likes Dale and topsquark
vanhees71 said:
You have the additional term
$$L=F_{\alpha \beta} (^*F)^{\alpha \beta} = F_{\alpha \beta} F_{\gamma \delta} \epsilon^{\alpha \beta \gamma \delta}.$$
The variation is
$$\delta L = 2 \delta F_{\alpha \beta} F_{\gamma \delta} \epsilon^{\alpha \beta \gamma \delta} = 8 \partial_{\alpha} \delta A_{\beta} \partial_{\gamma} A_{\delta} \epsilon^{\alpha \beta \gamma \delta}.$$
Thus, integrating by parts
$$\delta S=\int \mathrm{d}^4 x \delta L = -8 \int \mathrm{d}^4 x \delta A_{\beta} \partial_{\alpha} \partial_{\gamma} A_{\delta} \epsilon^{\alpha \beta \gamma \delta} \equiv 0.$$
Thus ##\delta S=0## is identically fulfilled, and that's equivalent for the Euler-Lagrange equations being fullfilled for all ##A_{\mu}##.
Thank you for your answer! I understand that. Is it possibile to get the same result showing that the term ∂(Fαβ (*F)αβ)/∂∂μAν in the equations of motion Is zero? Because I understand why your way Is correct but I do not understand why mine Is not
 
You can write it as
$$L=4 (\partial_{\alpha} A_{\beta})(\partial_{\gamma} A_{\delta}) \epsilon^{\alpha \beta \gamma \delta}.$$
Then
$$\frac{\partial L}{\partial (\partial_{\mu} A_{\nu})} =8 \delta_{\mu \alpha} \delta_{\nu \beta} (\partial_{\gamma} A_{\delta}) \epsilon^{\alpha \beta \gamma \delta}= 8 (\partial_{\gamma} A_{\delta}) \epsilon^{\mu \nu \gamma \delta}.$$
Then contracting with ##\partial_{\mu}## gives
$$\partial_{\mu} \frac{\partial L}{\partial (\partial_{\mu} A_{\nu})} = 8 \partial_{\mu} \partial_{\gamma} A_{\delta} \epsilon^{\mu \nu \gamma \delta}=0.$$
Since ##\partial L/\partial A^{\mu}=0##, that shows that the Euler-Lagrange equations are identically fulfilled, i.e., this term in the Lagrangian doesn't contribute to the equations of motion.
 
  • Like
Likes LittleSchwinger, topsquark and dextercioby
For the quantum state ##|l,m\rangle= |2,0\rangle## the z-component of angular momentum is zero and ##|L^2|=6 \hbar^2##. According to uncertainty it is impossible to determine the values of ##L_x, L_y, L_z## simultaneously. However, we know that ##L_x## and ## L_y##, like ##L_z##, get the values ##(-2,-1,0,1,2) \hbar##. In other words, for the state ##|2,0\rangle## we have ##\vec{L}=(L_x, L_y,0)## with ##L_x## and ## L_y## one of the values ##(-2,-1,0,1,2) \hbar##. But none of these...

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
310
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
5K
Replies
3
Views
2K
Replies
1
Views
1K
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 13 ·
Replies
13
Views
4K
Replies
8
Views
2K