Maxwell theory invariant under dual field strength tensor application

Click For Summary
SUMMARY

The discussion centers on the application of the dual field strength tensor in Maxwell's theory and its impact on the equations of motion (EOM). Participants confirm that adding the term \( F_{\alpha \beta} (*F)^{\alpha \beta} \) to the Lagrangian density does not alter the EOM, as it corresponds to a total derivative term. The explicit computation of the EOMs reveals that the term \( \partial(F_{\alpha \beta} (*F)^{\alpha \beta})/\partial(\partial_{\mu} A_{\nu}) \) results in zero, confirming that the Euler-Lagrange equations remain satisfied for all \( A_{\mu} \). The derivation involves careful manipulation of the Levi-Civita tensor and integration by parts.

PREREQUISITES
  • Understanding of classical field theory concepts
  • Familiarity with Lagrangian mechanics
  • Knowledge of the Levi-Civita tensor and its properties
  • Proficiency in tensor calculus and variational principles
NEXT STEPS
  • Study the derivation of the Euler-Lagrange equations in classical field theory
  • Learn about the properties and applications of the Levi-Civita tensor
  • Explore the implications of total derivative terms in Lagrangian formulations
  • Investigate advanced topics in gauge theories and their mathematical foundations
USEFUL FOR

This discussion is beneficial for theoretical physicists, graduate students in physics, and researchers focusing on classical field theory and Lagrangian mechanics.

Mark99
Messages
2
Reaction score
0
TL;DR
Dual field strength tensor and EOM
Hello everybody! I know in classical field theory adding in the Lagrangian density a term of the form Fαβ (*F)αβ (where by * we denote the dual of the field strength tensor) does not change the EOM, since this corresponds to adding a total derivative term to the action. However when computing the EOMs explicitly through ∂μ(∂L/∂∂μAυ)-∂L/∂Aυ=0, I do not find this to be true.
In particular I get ∂(Fαβ (*F)αβ)/∂∂μAν=4(*Fμν), when the result should be zero. I suppose I am not managing the Levi Civita tensor properly, but I do not understand my mistake. Is there someone who can do this derivation explicitly and show it is zero?
Thank you in advance.
 
Physics news on Phys.org
You have the additional term
$$L=F_{\alpha \beta} (^*F)^{\alpha \beta} = F_{\alpha \beta} F_{\gamma \delta} \epsilon^{\alpha \beta \gamma \delta}.$$
The variation is
$$\delta L = 2 \delta F_{\alpha \beta} F_{\gamma \delta} \epsilon^{\alpha \beta \gamma \delta} = 8 \partial_{\alpha} \delta A_{\beta} \partial_{\gamma} A_{\delta} \epsilon^{\alpha \beta \gamma \delta}.$$
Thus, integrating by parts
$$\delta S=\int \mathrm{d}^4 x \delta L = -8 \int \mathrm{d}^4 x \delta A_{\beta} \partial_{\alpha} \partial_{\gamma} A_{\delta} \epsilon^{\alpha \beta \gamma \delta} \equiv 0.$$
Thus ##\delta S=0## is identically fulfilled, and that's equivalent for the Euler-Lagrange equations being fullfilled for all ##A_{\mu}##.
 
  • Like
Likes   Reactions: Dale and topsquark
vanhees71 said:
You have the additional term
$$L=F_{\alpha \beta} (^*F)^{\alpha \beta} = F_{\alpha \beta} F_{\gamma \delta} \epsilon^{\alpha \beta \gamma \delta}.$$
The variation is
$$\delta L = 2 \delta F_{\alpha \beta} F_{\gamma \delta} \epsilon^{\alpha \beta \gamma \delta} = 8 \partial_{\alpha} \delta A_{\beta} \partial_{\gamma} A_{\delta} \epsilon^{\alpha \beta \gamma \delta}.$$
Thus, integrating by parts
$$\delta S=\int \mathrm{d}^4 x \delta L = -8 \int \mathrm{d}^4 x \delta A_{\beta} \partial_{\alpha} \partial_{\gamma} A_{\delta} \epsilon^{\alpha \beta \gamma \delta} \equiv 0.$$
Thus ##\delta S=0## is identically fulfilled, and that's equivalent for the Euler-Lagrange equations being fullfilled for all ##A_{\mu}##.
Thank you for your answer! I understand that. Is it possibile to get the same result showing that the term ∂(Fαβ (*F)αβ)/∂∂μAν in the equations of motion Is zero? Because I understand why your way Is correct but I do not understand why mine Is not
 
You can write it as
$$L=4 (\partial_{\alpha} A_{\beta})(\partial_{\gamma} A_{\delta}) \epsilon^{\alpha \beta \gamma \delta}.$$
Then
$$\frac{\partial L}{\partial (\partial_{\mu} A_{\nu})} =8 \delta_{\mu \alpha} \delta_{\nu \beta} (\partial_{\gamma} A_{\delta}) \epsilon^{\alpha \beta \gamma \delta}= 8 (\partial_{\gamma} A_{\delta}) \epsilon^{\mu \nu \gamma \delta}.$$
Then contracting with ##\partial_{\mu}## gives
$$\partial_{\mu} \frac{\partial L}{\partial (\partial_{\mu} A_{\nu})} = 8 \partial_{\mu} \partial_{\gamma} A_{\delta} \epsilon^{\mu \nu \gamma \delta}=0.$$
Since ##\partial L/\partial A^{\mu}=0##, that shows that the Euler-Lagrange equations are identically fulfilled, i.e., this term in the Lagrangian doesn't contribute to the equations of motion.
 
  • Like
Likes   Reactions: LittleSchwinger, topsquark and dextercioby

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
702
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 13 ·
Replies
13
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 24 ·
Replies
24
Views
3K