Meaning of coefficients in polynomial potential for scalar field

PhysicsRock
Messages
121
Reaction score
19
Homework Statement
For a potential ##V(\phi) = \sum_{k=0}^N c_k \phi^k##, we set ##c_k = 0## for all ##k \neq 2##. What is the physical meaning of ##c_2##?
Relevant Equations
Equation of motion ##\partial_\mu \partial^\mu \phi = 2c_2 \phi##.
For the solution of the equation of motion, we take a plane wave ##\phi(x) = e^{ik_\mu x^\mu}##. Plugged in, we obtain

$$
-(k_0)^2 + (\vec{k})^2 = 2c_2 \Rightarrow k_\mu k^\mu = 2c_2
$$

One can then find the group velocity (using ##(k_0)^2 = \omega^2##) to be

$$
\vec{v}_g = \frac{\vec{k}}{\sqrt{ \vec{k}^2 - 2c_2 }}
$$

which does not break causality only if ##c_2 \leq 0##. This leads to the assumption, at least from my perspective, that ##c_2## must be related to the mass / be the mass of the field, since if ##m = 0##, the field would propagate at the speed of light. However, using ##2c_2 = k_\mu k^\mu##, we can see that ##c_2## must have the same unit as ##k_\mu k^\mu##, i.e. m##^{-2}## in S.I. units.

Did I make a mistake along the way or am I misinterpreting the meaning of ##c_2 \leq 0##? Help is highly appreciated.
 
Physics news on Phys.org
I think I've figured it out. We can set ##c = \hbar = 1##. Then ##p^\mu = k^\mu##, which implies ##k_\mu k^\mu = p_\mu p^\mu = p^2 = -m^2##. Thus, we get ##2c_2 = -m^2 \Leftrightarrow c_2 = -\frac{m^2}{2}##.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top