Meaning of coefficients in polynomial potential for scalar field

PhysicsRock
Messages
121
Reaction score
19
Homework Statement
For a potential ##V(\phi) = \sum_{k=0}^N c_k \phi^k##, we set ##c_k = 0## for all ##k \neq 2##. What is the physical meaning of ##c_2##?
Relevant Equations
Equation of motion ##\partial_\mu \partial^\mu \phi = 2c_2 \phi##.
For the solution of the equation of motion, we take a plane wave ##\phi(x) = e^{ik_\mu x^\mu}##. Plugged in, we obtain

$$
-(k_0)^2 + (\vec{k})^2 = 2c_2 \Rightarrow k_\mu k^\mu = 2c_2
$$

One can then find the group velocity (using ##(k_0)^2 = \omega^2##) to be

$$
\vec{v}_g = \frac{\vec{k}}{\sqrt{ \vec{k}^2 - 2c_2 }}
$$

which does not break causality only if ##c_2 \leq 0##. This leads to the assumption, at least from my perspective, that ##c_2## must be related to the mass / be the mass of the field, since if ##m = 0##, the field would propagate at the speed of light. However, using ##2c_2 = k_\mu k^\mu##, we can see that ##c_2## must have the same unit as ##k_\mu k^\mu##, i.e. m##^{-2}## in S.I. units.

Did I make a mistake along the way or am I misinterpreting the meaning of ##c_2 \leq 0##? Help is highly appreciated.
 
Physics news on Phys.org
I think I've figured it out. We can set ##c = \hbar = 1##. Then ##p^\mu = k^\mu##, which implies ##k_\mu k^\mu = p_\mu p^\mu = p^2 = -m^2##. Thus, we get ##2c_2 = -m^2 \Leftrightarrow c_2 = -\frac{m^2}{2}##.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top