rubi said:
This is absolutely standard. And you really have all the information to perform the calculation yourself if it still isn't obvious to you. If you want to learn quantum mechanics, you should do these kind of exercises on your own. It's you who's doing the handwaving. I think none of your 2677 posts ever contained a calculation.
We perform the calculation for the state
$$\psi = h\otimes n\otimes n\otimes n$$
The interesting matrix entries of the ##U_i## are given by:
$$U_1 h\otimes n\otimes n\otimes n = h\otimes n\otimes n\otimes n$$
$$U_2 \frac 1 {\sqrt 2} (h+v)\otimes n\otimes n\otimes n = \frac 1 {\sqrt 2} (h+v)\otimes n\otimes n\otimes n \\ U_2 \frac 1 {\sqrt 2} (h-v)\otimes n\otimes n\otimes n = \frac 1 {\sqrt 2} (h-v)\otimes n\otimes a\otimes n$$
$$U_3 h\otimes n\otimes n\otimes n = h\otimes n\otimes n\otimes a \\ U_3 v\otimes n\otimes n\otimes n = v\otimes n\otimes n\otimes n \\ U_3 x\otimes n\otimes a\otimes n = x\otimes n\otimes a\otimes n$$
The remaining matrix entries are left as an exercise to the reader.
$$U_1 \psi = h\otimes n\otimes n\otimes n \\ U_2 U_1 \psi = \frac 1 2 (h+v)\otimes n\otimes n\otimes n + \frac 1 2 (h-v)\otimes n\otimes a\otimes n \\ U_3 U_2 U_1 \psi = \frac 1 2 h\otimes n\otimes n\otimes a + \frac 1 2 v\otimes n\otimes n\otimes n + \frac 1 2 (h-v)\otimes n\otimes a\otimes n$$
So ##P(v\otimes n\otimes n\otimes n) = (\frac 1 2)^2 = \frac 1 4## as expected and in accordance with Malus law ##I=I_0\cos(0^\circ)^2\cos(45^\circ)^2\cos(45^\circ)^2=\frac 1 4 I_0##.
Ok, not to burden you with looking over all my 2677 posts I will do some exercise here.
So with 16 dimensions like that:
##\begin{matrix} H n_1 n_2 n_3\\ V n_1 n_2 n_3\\ H n_1 n_2 a_3\\ V n_1 n_2 a_3\\ H n_1 a_2 n_3\\ V n_1 a_2 n_3\\ H n_1 a_2 a_3\\ V n_1 a_2 a_3\\
H a_1 n_2 n_3\\ V a_1 n_2 n_3\\ H a_1 n_2 a_3\\ V a_1 n_2 a_3\\ H a_1 a_2 n_3\\ V a_1 a_2 n_3\\ H a_1 a_2 a_3\\ V a_1 a_2 a_3 \end{matrix}##
matrices appear to be like that:
##U_1=\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0\\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0\\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{pmatrix}##
##U_2=\begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0 & \frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\
\frac{1}{2} & \frac{1}{2} & 0 & 0 & -\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\
\frac{1}{2} & -\frac{1}{2} & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\
-\frac{1}{2} & \frac{1}{2} & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0\\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0\\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{pmatrix}##
##U_3=\begin{pmatrix}0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0\\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0\\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{pmatrix}##
So with the state ##\psi =\begin{pmatrix} 1\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0 \end{pmatrix} ## we should get ##U_3 U_2 U_1\psi =\begin{pmatrix}
0\\ \frac{1}{2} \\ \frac{1}{2} \\0\\ \frac{1}{2} \\ -\frac{1}{2} \\0\\0\\0\\0\\0\\0\\0\\0\\0\\0 \end{pmatrix}##
That seems to agree with your calculation.
However I would question operational interpretation of say that dimension ##H a_1 a_2 a_3##. As you say:
rubi said:
Neither the phonon modes in the absorbing polarizer nor the redirected beam in the polarizing beam splitter interact with the second polarizer. The situation is completely identical. The phonons are stuck in the first polarizer and end up as heat. You don't have to remove any of these modes from the description. Obviously, they are still physically there, so they must also remain in the model.
So the modes absorbed in first polarizer have to stay in the model, but for them to stay there they have to have some label from interaction with the second and third polarizer. And this labeling side effect seems rather artificial and detached from physical reality.