MHB Measure Theory - Existence of Fsigma set contained in measurable set

Click For Summary
The discussion centers on proving the equivalence of a measurable set and the existence of an Fσ set within it, specifically for sets with finite outer measure. It establishes that if a set E is measurable, it can be expressed as the union of an Fσ set K and a null set N, leading to the conclusion that the outer measure of E equals that of K. Conversely, if an Fσ set F exists within E with equal outer measures, it is shown that the complement of F in E has an outer measure of zero, confirming E's measurability. The proof relies on properties of outer measure, including countable subadditivity and monotonicity. Overall, the thread effectively discusses the necessary conditions for a set to be measurable in terms of Fσ sets.
joypav
Messages
149
Reaction score
0
Problem:
Let $E$ have finite outer measure. Show that $E$ is measurable if and only if there is a $F_\sigma$ set $F \subset E$ with $m^*\left(F\right)=m^*\left(E\right)$.

Proof:
"$\leftarrow$"
To Show: $E=K\cup N$ where $K$ is $F_\sigma$ and $m^*(N)=m(N)=0$.

By assumption, $\exists F$, and $F_\sigma$ set, $F\subset E$, and $m^*(F)=m^*(E)$
Write,
$E=F\cup (E-F)$

To Show: $m^*(E-F)=0$

By a theorem given in class,
$\exists G$, a $G_\delta$ set, such that $E\subset G$ and $m^*(E)=m(G)$.
Then,
$m(E-F) \leq$ (G is "bigger" than E) $m(G-F) = m(G)-m(F) = m(E) - m(E) = 0$
$\implies m^*(E-F)=m(E-F)=0 \implies E$ is measurable.

Could someone get me started in the other direction??
 
Physics news on Phys.org
If $E$ is measurable, use the representation you wrote above: $E = K\cup N$ where $K$ is $F_\sigma$ and $m^*(N) = 0$. By countable subadditivity of the outer measure $m^*(E) \le m^*(K) + m^*(N) = m^*(K)$. On the other hand, since $K \subset E$, $m^*(K) \le m^*(E)$ by monotonicity of $m^*$. Therefore, $m^*(E) = m^*(K)$.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K