Measurement problem quantum mechanics

AI Thread Summary
To solve the measurement problem in quantum mechanics regarding the spin state of an electron, the first step is to normalize the given state |ϕ⟩. The probability of measuring the spin up state (+ℏ/2) can be determined using the Born rule, which states that the probability is the square of the inner product of the state |ϕ⟩ with the eigenstate |+⟩. Clarifications were made about the correct normalization of the coefficients in the spin state, emphasizing the need to find the component of |+⟩ from |ϕ⟩. The discussion highlights the importance of understanding the implications of operating with the spin operator S_z. Proper application of these concepts will yield the required probability for the measurement.
Ashish Somwanshi
Messages
31
Reaction score
4
Homework Statement
Measurement

Suppose an electron is in a spin state that can be described by

|ϕ⟩=3/√2|+⟩+1/2|−⟩
where + and – are eigenstates of Sz with eigenvalue +ℏ/2 and −ℏ/2.

If we measure z-component of spin of this electron, what is the probability of measuring spin up, +ℏ/2?

Answers within 5% error will be considered correct.
Relevant Equations
I myself want to know which formula we need to use.
I was not able to attempt since I don't know which formula or method can be used to solve the problem
 
Physics news on Phys.org
Ashish Somwanshi said:
Homework Statement:: Measurement

Suppose an electron is in a spin state that can be described by

|ϕ⟩=3/√2|+⟩+1/2|−⟩
where + and – are eigenstates of Sz with eigenvalue +ℏ/2 and −ℏ/2.

If we measure z-component of spin of this electron, what is the probability of measuring spin up, +ℏ/2?

Answers within 5% error will be considered correct.
Relevant Equations:: I myself want to know which formula we need to use.

I was not able to attempt since I don't know which formula or method can be used to solve the problem
First you need to normalize the state.

Hint 1: What does the result of operating ##S_z## mean?

Hint 2: Once you have that, how can you find the probability of finding the electron in the ##\mid + >## state?

-Dan
 
  • Like
Likes Greg Bernhardt
Ashish Somwanshi said:
Homework Statement:: Measurement

Suppose an electron is in a spin state that can be described by

|ϕ⟩=3/√2|+⟩+1/2|−⟩
Is that supposed to be ##\frac {\sqrt 3}{2}\ket + + \frac 1 2 \ket -##?

(Otherwise there is a rogue square root in the denominator!)
 
  • Like
Likes vanhees71, DaveE and topsquark
topsquark said:
First you need to normalize the state.

Hint 1: What does the result of operating ##S_z## mean?

Hint 2: Once you have that, how can you find the probability of finding the electron in the ##\mid + >## state?

-Dan
A quick note. I was looking at this wrong.

Correction:
Hint 1: How do we find the component of |+> from the ket?

Hint 2: How do we then find the probability it's in the |+> state from that?

-Dan
 
Born rule: the probability of measuring the system ##\ket{\psi}## in state ##\ket{\alpha}## is given by
$$
\mathcal{P}(\alpha) = \left| \braket{\alpha | \psi} \right|^2
$$
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top