Measurement problem quantum mechanics

Ashish Somwanshi
Messages
31
Reaction score
4
Homework Statement
Measurement

Suppose an electron is in a spin state that can be described by

|ϕ⟩=3/√2|+⟩+1/2|−⟩
where + and – are eigenstates of Sz with eigenvalue +ℏ/2 and −ℏ/2.

If we measure z-component of spin of this electron, what is the probability of measuring spin up, +ℏ/2?

Answers within 5% error will be considered correct.
Relevant Equations
I myself want to know which formula we need to use.
I was not able to attempt since I don't know which formula or method can be used to solve the problem
 
Physics news on Phys.org
Ashish Somwanshi said:
Homework Statement:: Measurement

Suppose an electron is in a spin state that can be described by

|ϕ⟩=3/√2|+⟩+1/2|−⟩
where + and – are eigenstates of Sz with eigenvalue +ℏ/2 and −ℏ/2.

If we measure z-component of spin of this electron, what is the probability of measuring spin up, +ℏ/2?

Answers within 5% error will be considered correct.
Relevant Equations:: I myself want to know which formula we need to use.

I was not able to attempt since I don't know which formula or method can be used to solve the problem
First you need to normalize the state.

Hint 1: What does the result of operating ##S_z## mean?

Hint 2: Once you have that, how can you find the probability of finding the electron in the ##\mid + >## state?

-Dan
 
  • Like
Likes Greg Bernhardt
Ashish Somwanshi said:
Homework Statement:: Measurement

Suppose an electron is in a spin state that can be described by

|ϕ⟩=3/√2|+⟩+1/2|−⟩
Is that supposed to be ##\frac {\sqrt 3}{2}\ket + + \frac 1 2 \ket -##?

(Otherwise there is a rogue square root in the denominator!)
 
  • Like
Likes vanhees71, DaveE and topsquark
topsquark said:
First you need to normalize the state.

Hint 1: What does the result of operating ##S_z## mean?

Hint 2: Once you have that, how can you find the probability of finding the electron in the ##\mid + >## state?

-Dan
A quick note. I was looking at this wrong.

Correction:
Hint 1: How do we find the component of |+> from the ket?

Hint 2: How do we then find the probability it's in the |+> state from that?

-Dan
 
Born rule: the probability of measuring the system ##\ket{\psi}## in state ##\ket{\alpha}## is given by
$$
\mathcal{P}(\alpha) = \left| \braket{\alpha | \psi} \right|^2
$$
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top