MHB Mechanics- general motion in a straight line.

AI Thread Summary
A particle's velocity is defined by the equation v = -t^3 + 9t for the time interval 0 < t < 5 seconds. The displacement of the particle at t = 5 seconds is calculated to be -43.8 meters, indicating it has moved 43.8 meters in the negative direction from its original position. To find the total distance traveled from t = 0 to t = 5, the velocity is analyzed, showing it is positive from 0 to 3 seconds and negative from 3 to 5 seconds. The correct approach involves integrating the absolute value of velocity over these intervals, leading to a total distance of 84.3 meters. Understanding the distinction between displacement and distance is crucial in solving these types of motion problems.
Shah 72
MHB
Messages
274
Reaction score
0
A particle moves in a straight line. The velocity of the particle, v m/s, at time t s is given by v= -t^3+9t m/s for 0<t<5
a) Find the displacement of the particle from its original position, when t=5s
I got the ans for this by integration and limits 5 and 0 =- 43.8
b) work out the distance that the particle travels from t= 0 to t=5
I don't understand this. Velocity is positive from 0 to 3 and negative from 3 to 5 when I plot the velocity time graph.
I tried integration again with limits 3 to 0 and the next limit from 5 to 3. Iam not getting the ans which is 84.3m
 
Mathematics news on Phys.org
in general, distance traveled is the integral of speed …

$\displaystyle D = \int_{t_0}^{t_f} |v(t)| \, dt$

Note the velocity in this problem is positive in the interval (0,3) and negative in the interval (3,5]

two ways to do this …

$\displaystyle D = \int_0^3 9t-t^3 \, dt + \int_3^5 t^3 - 9t \, dt$

$\displaystyle D = \int_0^3 9t-t^3 \, dt - \int_3^5 9t-t^3 \, dt$
 
skeeter said:
in general, distance traveled is the integral of speed …

$\displaystyle D = \int_{t_0}^{t_f} |v(t)| \, dt$

Note the velocity in this problem is positive in the interval (0,3) and negative in the interval (3,5]

two ways to do this …

$\displaystyle D = \int_0^3 9t-t^3 \, dt + \int_3^5 t^3 - 9t \, dt$

$\displaystyle D = \int_0^3 9t-t^3 \, dt - \int_3^5 9t-t^3 \, dt$
Thank you very much!
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Replies
4
Views
2K
Replies
6
Views
1K
Replies
4
Views
987
Replies
7
Views
923
Replies
2
Views
981
Replies
5
Views
1K
Replies
8
Views
1K
Replies
3
Views
1K
Back
Top