MHB Median, mode, normal distribution

wajeehayas
Messages
2
Reaction score
0
In a digital communication channel, assume that the number of bits received in error can be modeled by a binomial random variable, and assumed that a bit is received in error is 1×〖10〗^(−5) . if 16 million bits are transmitted,
What is the probability that more than 150 errors occur?
Find the median and mode of the distribution.
help needed to solve this :)
 
Mathematics news on Phys.org
wajeehayas said:
In a digital communication channel, assume that the number of bits received in error can be modeled by a binomial random variable, and assumed that a bit is received in error is 1×〖10〗^(−5) . if 16 million bits are transmitted,
What is the probability that more than 150 errors occur?
Find the median and mode of the distribution.
help needed to solve this :)

Hi wajeehayas!

What have you tried so far? What do you know about the binomial distribution? Here we have a large number of samples. Have you read or heard about how we can handle situations like that?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top