No problem, happy to help! Keep up the good work in your studies.

Click For Summary
The discussion revolves around calculating the electric potential in the region above a grounded conducting surface with two point charges using the method of images. The user presents their calculations for the potential contributions from both the real and image charges, expressing concern over the complexity of the final expression. Other participants emphasize that the complexity is expected due to the four contributing charges and that the mirror image method is necessary to satisfy boundary conditions. They also note that while textbook problems often yield simpler results, the detailed answer provided is appropriate for the problem at hand. The conversation concludes with appreciation for the guidance offered, highlighting the learning experience for the user.
blizzardof96
Messages
21
Reaction score
0

Homework Statement


The z = 0 plane is a grounded conducting surface. A point charge q is at (0,0,a), and charge 4q at (0,-2a,a).
Calculate the potential in the region z > 0.

Homework Equations


V=∑kq/r

The Attempt at a Solution


[/B]
Use the method of images.

V1 = kq/r+ + kq/r-
V1=kq(1/sqrt(x^2 +y^2 + (z-a)^2) - 1/sqrt(x^2 +y^2 + (z+a)^2)

V2=4kq/r+ + 4kq/r-
V2 = 4kq(1/sqrt(x^2 + (y+2a)^2 + (z-a)^2) - 1/sqrt(x^2+(y+2a)^2 + (z+a)^2))

Vtotal=ΣV=V1+V2
Vtotal=4kq(1/sqrt(x^2 + (y+2a)^2 + (z-a)^2) - 1/sqrt(x^2+(y+2a)^2 + (z+a)^2)) + kq(1/sqrt(x^2 +y^2 + (z-a)^2) - 1/sqrt(x^2 +y^2 + (z+a)^2)

Is this the correct answer?
 
Physics news on Phys.org
PF isn't for stamp-approving homework. The answer to your question can be obtained from your teacher: hand it in.
Or is there another reason you ask: have doubt at some point ? Tell us.
 
BvU said:
PF isn't for stamp-approving homework. The answer to your question can be obtained from your teacher: hand it in.
Or is there another reason you ask: have doubt at some point ? Tell us.

I have doubts as the value for Vtotal seems unnecessarily complex and there is nothing in the final expression that can simplify. The solution appears much different from the usual form we see in an electric potential problem.
 
blizzardof96 said:
unnecessarily complex
I see. Lots of textbook exercises have compact and elegant answers, I agree. Somewhat unrealistic, I must warn you.

In this case you have four terms from the four contributing charges (two real, two image). The mirror image method ensures the physical boundary conditions are met ( V=0 at z=0 and ##\vec E \perp (z=0)## ) and that's about all there is to be said.

At large distances ( ##|\vec r| >> a## ) your configuration should give a dipole field, but here you are clearly expected to give the full detailed answer you worked out.
 
  • Like
Likes blizzardof96
BvU said:
I see. Lots of textbook exercises have compact and elegant answers, I agree. Somewhat unrealistic, I must warn you.

In this case you have four terms from the four contributing charges (two real, two image). The mirror image method ensures the physical boundary conditions are met ( V=0 at z=0 and ##\vec E \perp (z=0)## ) and that's about all there is to be said.

At large distances ( ##|\vec r| >> a## ) your configuration should give a dipole field, but here you are clearly expected to give the full detailed answer you worked out.

Thank you. As a third year undergrad with less physics knowledge than yourself I appreciate it.
 

Similar threads

  • · Replies 19 ·
Replies
19
Views
2K
Replies
17
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
6K
  • · Replies 11 ·
Replies
11
Views
7K
  • · Replies 7 ·
Replies
7
Views
6K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K