MHB Methods for showing divergence of $\sum_{1}^{\infty} ln(1+\frac{1}{n})$?

  • Thread starter Thread starter ognik
  • Start date Start date
  • Tags Tags
    Ln Series
Click For Summary
The series $\sum_{1}^{\infty} \ln(1+\frac{1}{n})$ diverges, as confirmed by the limit comparison test with $b_n = \frac{1}{n}$. The ratio test proved inconclusive, yielding a limit of 1. Alternative methods for demonstrating divergence include expressing the logarithm as a difference of logarithms to utilize telescoping sums and applying the integral representation of the logarithm. The inequality derived from the integral shows that $\ln(1+\frac{1}{n})$ is greater than or equal to $\frac{1}{n+1}$, reinforcing the divergence conclusion. These methods collectively affirm the series' divergence.
ognik
Messages
626
Reaction score
2
Does\: $ \sum_{1}^{\infty} ln(1+\frac{1}{n}) $\: converge?
I tried the limit comparison test with bn=1/n and got that it diverges, which also looks right.
However I also tried the ratio test:
$ \lim_{{n}\to{\infty}} \left| \frac{{a}_{n+1}}{{a}_{n}} \right| = \lim_{{n}\to{\infty}} \left| \frac{\ln\left({1+\frac{1}{n+1}}\right)}{\ln\left({1+\frac{1}{n}}\right)} \right| = ? $
I have edited my original post because I had, thoughtlessly, used Ln a/Ln b = Ln (a-b), which is a silly mistake, of course that's not true.
Actually one should use L'Hositals rule to simplify this, which I am currently busy with :-).
 
Last edited:
Physics news on Phys.org
Using L'H rule I got that limit = 1, which is inconclusive for the ratio test, so the limit comparison test seems the only way to do this one.
 
Hi ognik,

ognik said:
so the limit comparison test seems the only way to do this one.

Limit comparison test certainly works. Thought I might offer two other methods that do as well:

1) Write $\ln\left(1+\frac{1}{n}\right)=\ln\left(\frac{n+1}{n}\right)=\ln(n+1)-\ln(n),$ then use a sequence of telescoping partial sums to show divergence.

2) It's useful to note that
$$\ln(x)=\int_{1}^{x}\frac{1}{t}dt$$
From this it follows that
$$\ln\left(1+\frac{1}{n}\right)=\int_{1}^{1+\frac{1}{n}}\frac{1}{t}dt\geq \frac{1}{n+1},$$
where the inequality holds from the shape of the graph of $f(t)=\frac{1}{t}.$

Hopefully this has been helpful. If not, feel free to disregard this. Let me know if anything is unclear/not quite right.
 
GJA said:
Hi ognik,
Limit comparison test certainly works. Thought I might offer two other methods that do as well:

1) Write $\ln\left(1+\frac{1}{n}\right)=\ln\left(\frac{n+1}{n}\right)=\ln(n+1)-\ln(n),$ then use a sequence of telescoping partial sums to show divergence.

2) It's useful to note that
$$\ln(x)=\int_{1}^{x}\frac{1}{t}dt$$
From this it follows that
$$\ln\left(1+\frac{1}{n}\right)=\int_{1}^{1+\frac{1}{n}}\frac{1}{t}dt\geq \frac{1}{n+1},$$
where the inequality holds from the shape of the graph of $f(t)=\frac{1}{t}.$

Hopefully this has been helpful. If not, feel free to disregard this. Let me know if anything is unclear/not quite right.

Both are useful and appreciated, thanks.
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 17 ·
Replies
17
Views
5K
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K