Michael's question at Yahoo Answers involving L'Hôpital's rule

  • Context: MHB 
  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    L'hopital's rule
Click For Summary
SUMMARY

The limit of Tan(x)^x as x approaches 0 can be evaluated using L'Hôpital's rule, leading to the conclusion that the limit equals 1. By taking the natural logarithm of both sides, the expression transforms into an indeterminate form, allowing the application of L'Hôpital's rule. The final result confirms that L = 1, demonstrating the effectiveness of logarithmic transformation and L'Hôpital's rule in solving limits involving exponential functions.

PREREQUISITES
  • Understanding of limits in calculus
  • Familiarity with L'Hôpital's rule
  • Knowledge of natural logarithms and their properties
  • Basic trigonometric functions, specifically tangent and cotangent
NEXT STEPS
  • Study the application of L'Hôpital's rule in various indeterminate forms
  • Explore the properties of logarithms in calculus
  • Learn about the behavior of trigonometric functions near zero
  • Practice solving limits involving exponential and logarithmic functions
USEFUL FOR

Students studying calculus, educators teaching limit concepts, and anyone looking to deepen their understanding of L'Hôpital's rule and its applications in evaluating limits.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
How to Find Lim x -> 0 of Tan(x)^x with the L'Hopital Rule?
I'm helping a friend out on his Calculus homework and I'm dumbfounded on this problem. I know that the correct procedure to solve this so far is:

Y= Tan(x)^x
lnY=xlnTan(x)

Then 1/tan(x)? Which would be 1/tan(0) and thus indefinite.
Help? :3 (thanks in advance)

Here is the original question:

How to Find Lim x -> 0 of Tan(x)^x with the L'Hopital Rule? - Yahoo! Answers

I have posted a link to this topic so the OP can find my response.

We are given a limit to evaluate, so let's assume it exists, and write:

$\displaystyle \lim_{x\to0}\tan^x(x)=L$

Take the natural logarithm of both sides:

$\displaystyle \ln\left(\lim_{x\to0}\tan^x(x) \right)=\ln(L)$

$\displaystyle \lim_{x\to0}\ln\left(\tan^x(x) \right)=\ln(L)$

$\displaystyle \lim_{x\to0}x\ln\left(\tan(x) \right)=\ln(L)$

$\displaystyle \lim_{x\to0}\frac{\ln\left(\cot(x) \right)}{\frac{1}{x}}=-\ln(L)$

Now we have the indeterminate form $\displaystyle \frac{\infty}{\infty}$, so application of L'Hôpital's rule yields:

$\displaystyle \lim_{x\to0}\frac{\csc(x)\sec(x)}{\frac{1}{x^2}}=-\ln(L)$

$\displaystyle \lim_{x\to0}\frac{x\sec(x)}{\frac{\sin(x)}{x}}=-\ln(L)$

Now, using the rule:

$\displaystyle \lim_{x\to c}\frac{f(x)}{g(x)}=\frac{\lim_{x\to c}f(x)}{\lim_{x\to c}g(x)}$

and the result:

$\displaystyle \lim_{x\to0}\frac{\sin(x)}{x}=1$

we have:

$\displaystyle \lim_{x\to0}x\sec(x)=-\ln(L)$

$\displaystyle 0=\ln(L)$

$\displaystyle L=1$
 
Last edited:
Physics news on Phys.org
a Thousand Thanks

Thank you for answering my question! Your answer is clearer than a cloudless day, brighter than the sun, and cooler than the cold waters!

Again, many thanks for making our life easier with this clear explanation.

- Michael
 
Thank you for taking the time to register and join us here!:cool:
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 1 ·
Replies
1
Views
953
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K