mrbetadine
- 1
- 0
- Homework Statement
- Consider a physical system of fixed angular momentum ##l##. The state of the system is in the subspace spanned by ##2l+1## eigenvectors ##|l,m\rangle## of ##L_z## (##-l\leq m\leq +l##). Find the state ##|\psi_0\rangle## of the system for which ##(\Delta L_x)^2+(\Delta L_y)^2+(\Delta L_z)^2## is minimal.
- Relevant Equations
- n/a
\begin{align*}
&(\Delta L_x)^2+(\Delta L_y)^2+(\Delta L_z)^2\\
={}&\langle L_x^2\rangle-\langle L_x \rangle^2+\langle L_y^2\rangle-\langle L_y \rangle^2+\langle L_z^2\rangle-\langle L_z \rangle^2\\
={}&\langle L_x^2+L_y^2+L_z^2 \rangle-(\langle L_x \rangle^2+\langle L_y \rangle^2+\langle L_z \rangle^2)\\
={}&l(l+1)\hbar^2-(\langle L_x \rangle^2+\langle L_y \rangle^2+\langle L_z \rangle^2).
\end{align*}
To minimize ##(\Delta L_x)^2+(\Delta L_y)^2+(\Delta L_z)^2## is equivalent to maximizing
$$ \langle L_x \rangle^2+\langle L_y \rangle^2+\langle L_z \rangle^2$$
How should I proceed?
I have also obtained an alternative expression
$$\langle L_x \rangle^2+\langle L_y \rangle^2+\langle L_z \rangle^2=\langle L_+\rangle\langle L_-\rangle+\langle L_z\rangle^2 $$
where
$$ L_\pm=L_x\pm i L_y$$
but it does not help much. It would be easy if we restrict ourselves to finding states of the form ##|l,m\rangle##.
*The hint I got indicates that ##|\psi_0\rangle## is the solution to the equations
\begin{align*}
(L_x+iL_y)|\psi_0\rangle&=0\\
L_z|\psi_0\rangle&=l\hbar|\psi_0\rangle.
\end{align*}
&(\Delta L_x)^2+(\Delta L_y)^2+(\Delta L_z)^2\\
={}&\langle L_x^2\rangle-\langle L_x \rangle^2+\langle L_y^2\rangle-\langle L_y \rangle^2+\langle L_z^2\rangle-\langle L_z \rangle^2\\
={}&\langle L_x^2+L_y^2+L_z^2 \rangle-(\langle L_x \rangle^2+\langle L_y \rangle^2+\langle L_z \rangle^2)\\
={}&l(l+1)\hbar^2-(\langle L_x \rangle^2+\langle L_y \rangle^2+\langle L_z \rangle^2).
\end{align*}
To minimize ##(\Delta L_x)^2+(\Delta L_y)^2+(\Delta L_z)^2## is equivalent to maximizing
$$ \langle L_x \rangle^2+\langle L_y \rangle^2+\langle L_z \rangle^2$$
How should I proceed?
I have also obtained an alternative expression
$$\langle L_x \rangle^2+\langle L_y \rangle^2+\langle L_z \rangle^2=\langle L_+\rangle\langle L_-\rangle+\langle L_z\rangle^2 $$
where
$$ L_\pm=L_x\pm i L_y$$
but it does not help much. It would be easy if we restrict ourselves to finding states of the form ##|l,m\rangle##.
*The hint I got indicates that ##|\psi_0\rangle## is the solution to the equations
\begin{align*}
(L_x+iL_y)|\psi_0\rangle&=0\\
L_z|\psi_0\rangle&=l\hbar|\psi_0\rangle.
\end{align*}