Minimum force required to keep two blocks from not falling

AI Thread Summary
The discussion centers on calculating the minimum force required to prevent two blocks from falling, focusing on the frictional forces involved. The maximum friction force between the blocks is determined to be 80N, while only 20N is needed for support, confirming stability. It is noted that the heavier block Q requires the maximum force, but calculating for block P is also deemed beneficial. The conversation emphasizes the importance of understanding the friction dynamics between the blocks. Overall, the calculations and reasoning provided clarify the conditions under which the blocks remain stable.
nafisanazlee
Messages
20
Reaction score
2
Homework Statement
Two blocks P and Q are of weight 20N and 100N, respectively. These are being pressed against a wall by a force F as shown. If the coefficient of static friction between the blocks is 0.1 and between block Q and the wall is 0.15, what will be the minimum force to keep the blocks in equilibrium?
I've tried to solve it in this way, but I'm not sure if my approach is correct or not. Can you please check?
Relevant Equations
Fsmax = μsN
CamScanner 11-26-2023 02.56.jpg
 
Physics news on Phys.org
:welcome:

Looks right. You might want to add why block P does not slide.
 
  • Like
Likes nafisanazlee
PeroK said:
:welcome:

Looks right. You might want to add why block P does not slide.
because the maximum friction force that can be provided between the two blocks becomes 0.1*800= 80N, and we only need 20N for support, so it's fine..?
 
nafisanazlee said:
because the maximum friction force that can be provided between the two blocks becomes 0.1*800= 80N, and we only need 20N for support, so it's fine..?
Yes, it was fairly obvious from the numbers that the maximum force was needed for Q (as it is much heavier). But, it does no harm to show the calculation for P as well.
 
  • Like
Likes nafisanazlee
PeroK said:
Yes, it was fairly obvious from the numbers that the maximum force was needed for Q (as it is much heavier). But, it does no harm to show the calculation for P as well.
Thank you so much for your time. Much appreciated.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top