aldom
- 1
- 0
- Homework Statement
- Make a model the motion of a missile in a case when it's high enough that gravity has to be taken as variable, Earth rotation effects are significant, and there's drag
I am modeling the missile as cylindrical for simplicity.
I understand that the equation modeling this should be
$$m\frac{d\mathbf{v}}{dt}=-\frac{GMm}{(R_E+z)^2}\hat{k}-\frac{1}{8}\rho_0e^{-\frac{z}{H_1}}\pi D^2C_d(\mathrm{Re})|\mathbf{v}_R|\mathbf{v}_R+2m\mathbf{v}\times\mathbf{\omega}+m\mathbf{\omega}\times(\mathbf{r}\times \mathbf{\omega}),$$
where:
$$\mathbf{v}$$ is the time derivative of the position vector with origin at the Earth's center, $$\rho_0 = 1.2\ \mathrm{kg/m^3}$$, $$H_1 = 8.4 \ \mathrm{km}$$, $$\mathbf{v}_R=\mathbf{v}-\mathbf{\omega} \times \mathbf{r}$$ and $$|\mathbf{\omega}|=7.3\times10^{-5} \ \mathrm{s^{-1}}$$.
I'm confused about what should the ##x##, ##y## and ##z## components of this equation be. I'm also confused about what ##C_d(\mathrm{Re})## should I use in this case.
I understand that the equation modeling this should be
$$m\frac{d\mathbf{v}}{dt}=-\frac{GMm}{(R_E+z)^2}\hat{k}-\frac{1}{8}\rho_0e^{-\frac{z}{H_1}}\pi D^2C_d(\mathrm{Re})|\mathbf{v}_R|\mathbf{v}_R+2m\mathbf{v}\times\mathbf{\omega}+m\mathbf{\omega}\times(\mathbf{r}\times \mathbf{\omega}),$$
where:
$$\mathbf{v}$$ is the time derivative of the position vector with origin at the Earth's center, $$\rho_0 = 1.2\ \mathrm{kg/m^3}$$, $$H_1 = 8.4 \ \mathrm{km}$$, $$\mathbf{v}_R=\mathbf{v}-\mathbf{\omega} \times \mathbf{r}$$ and $$|\mathbf{\omega}|=7.3\times10^{-5} \ \mathrm{s^{-1}}$$.
I'm confused about what should the ##x##, ##y## and ##z## components of this equation be. I'm also confused about what ##C_d(\mathrm{Re})## should I use in this case.
Last edited by a moderator: