Mistake in Exercises for the Feynman Lectures?

AI Thread Summary
The discussion centers on the interpretation of the velocity components of a point on a rolling wheel, specifically focusing on the angle θ and its impact on velocity calculations. The initial assertion is that the velocity should be expressed as v = V((1+sinθ)i -(cosθ)j), based on the expected behavior of the wheel's motion. Clarification is sought on whether this expression accurately predicts the speed of point P on the rim relative to the ground contact point. The question highlights the relationship between the angle of rotation and the resulting velocity components. Ultimately, a misreading of the question is acknowledged, leading to a better understanding of the problem.
suh112
Messages
4
Reaction score
4
Homework Statement
This is problem 14.1 from "Exercises for the Feynman Lectures on Physics":

14.1 A rigid wheel of radius R is rolling without slipping on a horizontal surface. The plane of the wheel is vertical, and the axis of the wheel is moving horizontally with a speed V relative to the surface. If the axis of the wheel is parallel to the z-axis, V is in the positive x-direction, and ##\theta## the angle through which the wheel has rotated since a certain point P on the rim was in contact with the ground, show that the instantaneous velocity (speed and direction) of the point P is given by
v = V ((1- cos##\theta##)i + (sin ##\theta##) j).
Relevant Equations
v = V ((1- cos##\theta##)i + (sin ##\theta##) j)
It seems to me that the answer should be v = V((1+sinθ)i -(cosθ)j) intuitively since ##V_x## should be zero at θ = −π\2 and should be greatest when the angle is 90 degrees. Similarly, the component of velocity in the y direction should be greatest when the angle ##\theta## is 180 degrees and zero when ##\theta## is 0 degrees. Am I doing something wrong?
 

Attachments

  • IMG_1061.jpg
    IMG_1061.jpg
    44.8 KB · Views: 75
Last edited:
Physics news on Phys.org
According to the statement of the question, angle θ is "the angle through which the wheel has rotated since a certain point P on the rim was in contact with the ground". If the wheel rolls without slipping what is the speed of certain point P on the rim relative to the point of contact with the ground? Does the given expression predict that? Does your expression predict that?
 
  • Like
Likes SammyS and Orodruin
kuruman said:
According to the statement of the question, angle θ is "the angle through which the wheel has rotated since a certain point P on the rim was in contact with the ground". If the wheel rolls without slipping what is the speed of certain point P on the rim relative to the point of contact with the ground? Does the given expression predict that? Does your expression predict that?
Oh I misread the question. This makes sense thanks.
 
  • Like
Likes berkeman and kuruman
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
I was thinking using 2 purple mattress samples, and taping them together, I do want other ideas though, the main guidelines are; Must have a volume LESS than 1600 cubic centimeters, and CAN'T exceed 25 cm in ANY direction. Must be LESS than 1 kg. NO parachutes. NO glue or Tape can touch the egg. MUST be able to take egg out in less than 1 minute. Grade A large eggs will be used.
Back
Top