B Misuse of Velocity Addition: Troubleshooting

Kairos
Messages
182
Reaction score
16
Something seems wrong with my use of velocity addition:

A fly of rest mass ## m_{0} ## in your reference frame (say a platform) is posed in a train passing with a velocity ## v ## relative to the platform. The fly mass is now for you ## m_{1} = m_{0} \gamma(v) ##. Now in the train the fly is flying towards the front of the train with a velocity ## v ## relative to the reference frame of the train, so ## m_{2} = m_{1} \gamma (v) = m_{0} \gamma^2 (v) =\frac{m_{0}}{1-(v/c)^2} ##. This result is different from ## m_{2} = m_{0} \gamma(V) ## where ## V ## is the composition of the train and fly velocities ## V=\frac{2 v}{1+(v/c)^2} ##, which gives if I am not mistaken ## m_{2} = m_{0} \sqrt{\frac{1+(v/c)^2}{1-(v/c)^2}} ##. What is wrong?
 
Physics news on Phys.org
First, a couple of points:
Kairos said:
A fly of rest mass ## m_{0} ## in your reference frame
Rest mass is an invariant. You do not need to specify a frame - everyone will agree it.
Kairos said:
The fly mass is now for you ## m_{1} = m_{0} \gamma(v) ##.
"Mass" without any qualifier is usually taken to mean the invariant mass. I can infer here that you mean the relativistic mass, but strictly this statement is wrong as you've written it. The fly's mass is ##m_0##, full stop. You should write "the fly's relativistic mass" if you want to talk about relativistic mass. It's also worth noting that relativistic mass has been a deprecated concept in mainstream physics for many decades now, and it's better not to use it. However, you could observe that the total energy of the fly is ##E_1=E_0\gamma(v)=m_0c^2\gamma(v)##.
Kairos said:
This result is different from ## m_{2} = m_{0} \gamma(V) ## where ## V ## is the composition of the train and fly velocities ## V=\frac{2 v}{1+(v/c)^2} ##, which gives if I am not mistaken ## m_{2} = m_{0} \sqrt{\frac{1+(v/c)^2}{1-(v/c)^2}} ##. What is wrong?
Getting to your question, what's wrong is your expectation that gamma factors should multiply. The energy of an object is the ##t## component of its four momentum (give or take a factor of ##c##). In its rest frame, the four momentum is a four vector ##(E_0/c,0,0,0)## - that is, it has rest energy and its three momentum is zero. If I then boost the fly to some speed ##v## I can apply the Lorentz transforms to the four momentum and deduce that, in the frame of the train where the fly is doing ##v##, the fly's four momentum is ##(\gamma E_0/c,-\gamma v E_0/c^2,0,0)##. To get the fly's four momentum in my (platform) frame I need to boost again - but this time the ##x## component of the four momentum is already non-zero, so the ##t## component of the resulting vector is not simply ##\gamma## times what it was in the train frame.

The underlying reason for this is that rapidities add, not velocity or gamma. This turns out to be the Minkowski geometry equivalent of the Euclidean statement that angles add but gradients of lines don't.
 
  • Like
Likes Kairos, PeterDonis, Dale and 1 other person
Thank you for your recommendations on the appropriate terms to use and for the explanation. Concerning my question, is the solution obtained with the velocity composition correct? that is ## E_{2} = m_{0} c^2 \gamma (V)= m_{0} c^2 \sqrt{\frac{1+(v/c)^2}{1-(v/c)^2}} ##
 
Last edited:
I agree your expression for ##V## but I don't get the square root in the expression for ##\gamma(V)## (i.e., I think you've written ##\sqrt{\gamma(V)}##).
 
OK I'll redo the calculation
thanks a lot!
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...

Similar threads

Back
Top