Misuse of Velocity Addition: Troubleshooting

Click For Summary

Discussion Overview

The discussion revolves around the use of velocity addition in the context of special relativity, specifically addressing the relativistic mass of a fly moving on a train and the implications of using different reference frames. Participants explore the correct application of relativistic principles and the composition of velocities.

Discussion Character

  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant presents a scenario involving a fly with rest mass ## m_{0} ## on a train moving with velocity ## v ##, leading to confusion regarding the calculation of relativistic mass and energy.
  • Another participant points out that rest mass is invariant and criticizes the use of the term "mass" without qualifiers, suggesting that the term "relativistic mass" should be used instead.
  • The second participant emphasizes that gamma factors should not simply multiply and explains the concept of four momentum and the addition of rapidities rather than velocities.
  • A third participant seeks clarification on whether the expression for energy obtained using velocity composition is correct.
  • A fourth participant expresses confusion regarding the square root in the expression for ##\gamma(V)##, suggesting a potential error in the formulation.
  • The initial poster acknowledges the feedback and indicates a willingness to redo the calculations.

Areas of Agreement / Disagreement

Participants express differing views on the correct application of relativistic mass and the use of terminology. There is no consensus on the correctness of the calculations presented, and the discussion remains unresolved regarding the specific expressions for energy and mass.

Contextual Notes

Participants highlight the importance of precise terminology in relativity, particularly the distinction between rest mass and relativistic mass. There are unresolved issues regarding the calculations of energy and the application of velocity addition formulas.

Kairos
Messages
182
Reaction score
16
Something seems wrong with my use of velocity addition:

A fly of rest mass ## m_{0} ## in your reference frame (say a platform) is posed in a train passing with a velocity ## v ## relative to the platform. The fly mass is now for you ## m_{1} = m_{0} \gamma(v) ##. Now in the train the fly is flying towards the front of the train with a velocity ## v ## relative to the reference frame of the train, so ## m_{2} = m_{1} \gamma (v) = m_{0} \gamma^2 (v) =\frac{m_{0}}{1-(v/c)^2} ##. This result is different from ## m_{2} = m_{0} \gamma(V) ## where ## V ## is the composition of the train and fly velocities ## V=\frac{2 v}{1+(v/c)^2} ##, which gives if I am not mistaken ## m_{2} = m_{0} \sqrt{\frac{1+(v/c)^2}{1-(v/c)^2}} ##. What is wrong?
 
Physics news on Phys.org
First, a couple of points:
Kairos said:
A fly of rest mass ## m_{0} ## in your reference frame
Rest mass is an invariant. You do not need to specify a frame - everyone will agree it.
Kairos said:
The fly mass is now for you ## m_{1} = m_{0} \gamma(v) ##.
"Mass" without any qualifier is usually taken to mean the invariant mass. I can infer here that you mean the relativistic mass, but strictly this statement is wrong as you've written it. The fly's mass is ##m_0##, full stop. You should write "the fly's relativistic mass" if you want to talk about relativistic mass. It's also worth noting that relativistic mass has been a deprecated concept in mainstream physics for many decades now, and it's better not to use it. However, you could observe that the total energy of the fly is ##E_1=E_0\gamma(v)=m_0c^2\gamma(v)##.
Kairos said:
This result is different from ## m_{2} = m_{0} \gamma(V) ## where ## V ## is the composition of the train and fly velocities ## V=\frac{2 v}{1+(v/c)^2} ##, which gives if I am not mistaken ## m_{2} = m_{0} \sqrt{\frac{1+(v/c)^2}{1-(v/c)^2}} ##. What is wrong?
Getting to your question, what's wrong is your expectation that gamma factors should multiply. The energy of an object is the ##t## component of its four momentum (give or take a factor of ##c##). In its rest frame, the four momentum is a four vector ##(E_0/c,0,0,0)## - that is, it has rest energy and its three momentum is zero. If I then boost the fly to some speed ##v## I can apply the Lorentz transforms to the four momentum and deduce that, in the frame of the train where the fly is doing ##v##, the fly's four momentum is ##(\gamma E_0/c,-\gamma v E_0/c^2,0,0)##. To get the fly's four momentum in my (platform) frame I need to boost again - but this time the ##x## component of the four momentum is already non-zero, so the ##t## component of the resulting vector is not simply ##\gamma## times what it was in the train frame.

The underlying reason for this is that rapidities add, not velocity or gamma. This turns out to be the Minkowski geometry equivalent of the Euclidean statement that angles add but gradients of lines don't.
 
  • Like
Likes   Reactions: Kairos, PeterDonis, Dale and 1 other person
Thank you for your recommendations on the appropriate terms to use and for the explanation. Concerning my question, is the solution obtained with the velocity composition correct? that is ## E_{2} = m_{0} c^2 \gamma (V)= m_{0} c^2 \sqrt{\frac{1+(v/c)^2}{1-(v/c)^2}} ##
 
Last edited:
I agree your expression for ##V## but I don't get the square root in the expression for ##\gamma(V)## (i.e., I think you've written ##\sqrt{\gamma(V)}##).
 
OK I'll redo the calculation
thanks a lot!
 

Similar threads

  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 26 ·
Replies
26
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
6K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 22 ·
Replies
22
Views
3K