Mixing two gases in an isolated system and calculating final p and T

AI Thread Summary
The discussion centers on calculating the final pressure and temperature after mixing two gases, carbon dioxide (CO2) and xenon (Xe), in an isolated system. The initial calculations yielded a final pressure of 5373.64 hPa and a final temperature of 303.15 K, but confusion arose regarding the relevance of the gases' masses and the assumption of ideal gas behavior. It was clarified that the final pressures should be calculated using the final temperature, leading to a revised final pressure of 5041.06 hPa. The low final temperature was attributed to the different heat capacities of the gases, indicating that diatomic molecules like CO2 require more energy to heat up compared to monoatomic gases like Xe. The discussion concluded with a focus on the importance of correctly applying thermodynamic principles to achieve accurate results.
chocopanda
Messages
15
Reaction score
1
Homework Statement
An isolated container has two separate halves (V = V1 = V2 = 5,00l). One half contains n1 = 1,00 mol carbon dioxide (CO2) at a temperature of T1 = 0C. The other half contains n1 = 1,00 mol Xenon (Xe) at a temperature of T2 = 100C. Now the partition between the two halves are opened, the two gases mix and an equilibrium sets in. Calculate the final temperature T3 and pressure p2.
Data for CO2: m_A,CO2 = 131,3g, f_CO2 = 7. Data for Xe: m_A,Xe = 131,3g, f_Xe = 3.
Relevant Equations
dU = δQ + δW
pV = nkT
U = f/2*nRT
dQ = C_V*n*dT
Hey everyone, I have an attempt at fully solving this problem (my final pressure is ##p_f = 5373,64 hPa##, final temp. is ##T_f = 303,15K = 30C##), but this exercise confuses me very much.
First, I have not used the masses in my calculations and I'm pretty sure my prof. accidentally copypasted the mass for ##Xe## into ##CO_2##, since the molar mass doesn't add up, so ##m_A,CO2 = 44,01g##. I'm still unsure how they are relevant though.
Secondly, it is not stated in the exercise that the gases are ideal gases, but since this is a physics thermodynamic class and literally every other problem we had to solve we had to assume the gases are ideal. I could be very wrong in assuming this, but otherwise I would have no idea how to solve this problem.

Now for the system, I am imagining (as stated in the exercise) an isolated container with two gases separated by a partition. Both halves fill a volume of ##V=5l## so after removing the partition the final volume should simply add up to ##V_f = 10l##.
In a mixture of gases, the final pressure is the sum of the partial pressures of the gases (Dalton's law). Assuming we are dealing with ideal gases, we can simply use
$$p_i = \frac {n_i k T_i}{V}$$
$$p_1*V_1 = p_2*V_2$$
solving for ##p_2## and using ##V_2 = V_f##. My final partial pressures are ##p_2,CO2 = 2271,10 hPa## and ##p_2,Xe = 3102,54 hPa## so ##p_f = p_2,CO2 + p_2,Xe = 5373,64 hPa##. Is this even plausible?

Then for the final temperature, using the first law of thermodynamics ##dU = δQ + δW## and there not being any work done on the system ##dU = δQ## we could simply calculate the final temperature by using
$$ΔU = \frac {f} {2} * nR(T_f - T_i)$$
with ##f## already being provided by the homework statement and ##ΔU_1 = -ΔU_2##, so what I end up getting for ##T_f## is:
$$T_f = \frac {\frac {7} {2} T_1 + \frac {3} {2} T_2} {5}$$

$$T_f = 303,15K$$

Does that even make sense? How come the temperature of the mix (even though the mols and volume the gases occupy are the same) after equilibrium isn't close to 50C? Did I solve the problem wrong? Is it because of the degree of freedom? (Molecule vs atom)
I feel like I'm either being baited by the mass or I completely missed the mark on this one, I'm thankful for any input.
 
Last edited:
Physics news on Phys.org
chocopanda said:
Homework Statement: An isolated container has two separate halves (V = V1 = V2 = 5,00l). One half contains n1 = 1,00 mol carbon dioxide (CO2) at a temperature of T1 = 0C. The other half contains n1 = 1,00 mol Xenon (Xe) at a temperature of T2 = 100C. Now the partition between the two halves are opened, the two gases mix and an equilibrium sets in. Calculate the final temperature T3 and pressure p2.
Data for CO2: m_A,CO2 = 131,3g, f_CO2 = 7. Data for Xe: m_A,Xe = 131,3g, f_Xe = 3.
Relevant Equations: dU = δQ + δW
pV = nkT
U = f/2*nRT
dQ = C_V*n*dT

Hey everyone, I have an attempt at fully solving this problem (my final pressure is ##p_f = 5373,64 hPa##, final temp. is ##T_f = 303,15K = 30C##), but this exercise confuses me very much.
First, I have not used the masses in my calculations and I'm pretty sure my prof. accidentally copypasted the mass for ##Xe## into ##CO_2##, since the molar mass doesn't add up, so ##m_A,CO2 = 44,01g##. I'm still unsure how they are relevant though.
Correct
chocopanda said:
Secondly, it is not stated in the exercise that the gases are ideal gases, but since this is a physics thermodynamic class and literally every other problem we had to solve we had to assume the gases are ideal. I could be very wrong in assuming this, but otherwise I would have no idea how to solve this problem.
Correct again.
chocopanda said:
Now for the system, I am imagining (as stated in the exercise) an isolated container with two gases separated by a partition. Both halves fill a volume of ##V=5l## so after removing the partition the final volume should simply add up to ##V_f = 10l##.
In a mixture of gases, the final pressure is the sum of the partial pressures of the gases (Dalton's law). Assuming we are dealing with ideal gases, we can simply use
$$pV = nkT$$
$$p_1*V_1 = p_2*V_2$$
solving for ##p_2## and using ##V_2 = V_f##. My final partial pressures are ##p_2,CO2 = 2271,10 hPa## and ##p_2,Xe = 3102,54 hPa## so ##p_f = p_2,CO2 + p_2,Xe = 5373,64 hPa##. Is this even plausible?

Then for the final temperature, using the first law of thermodynamics ##dU = δQ + δW## and there not being any work done on the system ##dU = δQ## we could simply calculate the final temperature by using
$$ΔU = \frac {f} {2} * nR(T_f - T_i)$$
with ##f## already being provided by the homework statement and ##ΔU_1 = -ΔU_2##, so what I end up getting for ##T_f## is:
$$T_f = \frac {\frac {7} {2} T_1 + \frac {3} {2} T_2} {5}$$

$$T_f = 303,15K$$

Does that even make sense? How come the temperature of the mix (even though the mols and volume the gases occupy are the same) after equilibrium isn't close to 50C? Did I solve the problem wrong? Is it because of the degree of freedom? (Molecule vs atom)
I feel like I'm either being baited by the mass or I completely missed the mark on this one, I'm thankful for any input.
You calculated the final temperature correctly (nice job), but not the final partial pressures. The final partial pressures should satisfy:

$$p_fV_f=(1)RT_f$$They should be equal.
 
Chestermiller said:
Correct

Correct again.

You calculated the final temperature correctly (nice job), but not the final partial pressures. The final partial pressures should satisfy:

$$p_fV_f=(1)RT_f$$They should be equal.
Thank you so much for the quick answer! I figured out where I went wrong (I think):

Instead of calculating the final (partial) pressure via the final temperature, I mistakingly used the gases inital temp. and volumes. So to calculate the partial pressures, which should be equal like you mentioned, the equation should be:

$$p_i = \frac {n_i R T_f} {V_f}$$
$$p_f = \sum_{i}^\infty \frac{n_i R T_f} {V_f} = \sum_{i}^\infty p_i$$

For their partial pressures I'm getting ##p_i = 2520,53 hPa## so ##p_f = 5041,06 hPa##

Hope I'm right! What still isn't that clear to me is why the temperature is rather low, I get where that comes from mathematically but physically? Does that just mean that diatomic molecules like ##CO_2## that have a higher heat capacity ( ##C_V = \frac {7}{2} R## here) than atoms with lesser degrees of freedom just require more energy to heat up? I guess that makes sense considering the definition of heat capacity
And I'm still not sure why their masses were provided in the homework statement
 
Last edited:
chocopanda said:
Thank you so much for the quick answer! I figured out where I went wrong (I think):

Instead of calculating the final (partial) pressure via the final temperature, I mistakingly used the gases inital temp. and volumes. So to calculate the partial pressures, which should be equal like you mentioned, the equation should be:

$$p_i = \frac {n_i R T_f} {V_f}$$
$$p_f = \sum_{i}^\infty \frac{n_i R T_f} {V_f} = \sum_{i}^\infty p_i$$

For their partial pressures I'm getting ##p_i = 2520,53 hPa## so ##p_f = 5041,06 hPa##
I have no idea what you did here, especially those infinite sums. I get for the final partial pressures $$p_f=\frac{(8.314)(303.15)}{0.01}=252\ kPa$$
 
Chestermiller said:
I have no idea what you did here, especially those infinite sums. I get for the final partial pressures $$p_f=\frac{(8.314)(303.15)}{0.01}=252\ kPa$$
Hi yes, that's what I got as well as per my previous post for the partial pressures, and I have to add them up for the overall final pressure
 
  • Like
Likes Chestermiller
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top