Modern Cosmology by Dodelson: Problem 6.12 a

Click For Summary
SUMMARY

The discussion revolves around Problem 6.12 a from "Modern Cosmology" by Dodelson, focusing on deriving identities involving slow-roll parameters during inflation. The key equation derived is $$\frac {d} {d\eta} (\frac {1} {aH})= \epsilon - 1$$, with the slow-roll parameter defined as $$\epsilon \equiv \frac {d} {dt} (\frac {1} {H})= \frac {-\dot H} {aH^2}$$. Participants clarified the differentiation with respect to conformal time (η) and corrected the interpretation of the dot notation for derivatives, leading to the conclusion that $$H=\frac{\dot a}{a^2}$$ simplifies the calculations significantly.

PREREQUISITES
  • Understanding of inflationary cosmology concepts
  • Familiarity with the slow-roll parameters in cosmology
  • Knowledge of differentiation with respect to time and conformal time
  • Proficiency in manipulating equations involving scale factors and derivatives
NEXT STEPS
  • Study the derivation of slow-roll parameters in cosmological models
  • Learn about the implications of the Friedmann equations in inflationary theory
  • Explore the relationship between scale factors and cosmic expansion
  • Investigate the role of conformal time in cosmological equations
USEFUL FOR

Students of cosmology, physicists working on inflationary models, and researchers interested in the mathematical foundations of modern cosmology will benefit from this discussion.

travelingscienceman
Messages
5
Reaction score
1

Homework Statement


The general goal of the problem is to derive some useful identities involving the slow-roll parameters during inflation.
For part a show that:
$$\frac {d} {d\eta} (\frac {1} {aH})= \epsilon - 1$$

Homework Equations



$$\epsilon \equiv \frac {d} {dt} (\frac {1} {H})= \frac {-\dot H} {aH^2}$$
$$H=\frac {\dot a}{a}$$
$$\eta\approx\frac{-1}{aH}$$

The Attempt at a Solution


First I put everything into the scale factor a and its derivatives:

$$-\dot H = \frac{\dot a^2 - \ddot a a}{a^2}$$
$$\frac{1}{a H^2}=\frac{a}{\dot a^2}$$

$$\frac {-\dot H} {aH^2} = \frac{\dot a^2 - \ddot a a}{a\dot a^2}=\frac{1}{a}-\frac{\ddot a}{\dot a^2}=\epsilon$$

Now this is where I am struggling.

He uses a derivative with respect to time and one with respect to conformal time (##\eta##). Coupled with the fact that

$$\frac {d} {d\eta} (\frac {1} {aH})=\frac {d} {d\eta} (-\eta) =-1=\epsilon - 1$$

Which means that ##\epsilon=0## which is not correct. Instead of substituting I could do the following:

$$\frac {d} {d\eta} (\frac {1} {aH})=\frac {d} {d\eta} (\frac {1} {\dot a})=\frac {-1} {\ddot a}=\epsilon - 1$$

Rearranging we get

$$\epsilon=1-\frac {1} {\ddot a}$$

And I am not sure this is correct either. I cannot see any way to make the RHS equal to epsilon.

Any help showing where I might have gone wrong would be appreciated and thanks in advance for taking a look at this!
 
Physics news on Phys.org
Try using that ##\frac {d} {d\eta} = a \frac{d}{dt}##. So you've got ##a \frac{d}{dt} (\frac{1}{a} \frac{1}{H})##. It's pretty straightforward from there.
 
Last edited:
  • Like
Likes   Reactions: travelingscienceman
That helps but I am still having trouble. With ##\epsilon=\frac{-\dot H}{a H^2}## I just end up going in circles. But if I work with ##\epsilon=\frac{d}{dt}\frac{1}{H}## I get the following:

$$\epsilon=\frac{d}{dt}\frac{1}{H}=\frac{\dot a^2 - \ddot a a}{\dot a^2}$$
$$\frac{d}{d\eta}\frac{1}{\dot a}=a\frac{d}{dt}\frac{1}{\dot a}=\frac{-a}{\ddot a}=\epsilon-1$$
$$1+\frac{a}{\ddot a}=\epsilon=\frac{\dot a^2 - \ddot a a}{\dot a^2}$$
$$\dot a^2 \ddot a -a \dot a^2=\ddot a \dot a^2 - \ddot a^2 a$$
$$\dot a =\ddot a$$

Which is better but not right.
 
From looking inside Dodelson's text at Amazon, it appears that the author uses a dot to denote differentiation with respect to ##\eta##. But, it looks like you are sometimes interpreting the dot as differentiation with respect to ##t## (for example, when you write ##H =\large \frac{\dot a}{a}##).
 
  • Like
Likes   Reactions: travelingscienceman
TSny said:
From looking inside Dodelson's text at Amazon, it appears that the author uses a dot to denote differentiation with respect to ##\eta##. But, it looks like you are sometimes interpreting the dot as differentiation with respect to ##t## (for example, when you write ##H =\large \frac{\dot a}{a}##).

Ah, that explains some inconsistencies. I assumed dot was differentiation by ##t## from that definition of ##H##.
 
Thank you both. Today with a clear head I figured it out.

$$H=\frac{\dot a}{a^2}$$

And so

$$\epsilon=\frac{2\dot a^2 -\ddot a a}{\dot a^2}$$

Which made things much easier.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
7
Views
3K