Modern Quantum Mechanics by J. J. Sakurai

Click For Summary
SUMMARY

The forum discussion centers on "Modern Quantum Mechanics" by J. J. Sakurai and Jim J. Napolitano, highlighting its comprehensive approach to quantum mechanics. Users praise the book for its clarity in Chapters 1, 2, 3, 4, and 6, while expressing concerns about the readability of Chapters 5 and 7, which were compiled posthumously. The international edition is recommended for its quality, and the text is noted for its foundational treatment of quantum mechanics, starting with the Stern-Gerlach experiment. Overall, the book is deemed essential for graduate-level quantum mechanics courses.

PREREQUISITES
  • Understanding of fundamental quantum mechanics concepts
  • Familiarity with the Stern-Gerlach experiment
  • Knowledge of time-independent perturbation theory
  • Basic principles of scattering theory
NEXT STEPS
  • Explore "Cohen-Tannoudji's Quantum Mechanics" for comparative analysis
  • Study "Time-Independent Perturbation Theory" in detail
  • Research "Scattering Theory" techniques and methodologies
  • Review supplementary texts for Chapters 5 and 7 for enhanced clarity
USEFUL FOR

Graduate students in physics, educators teaching quantum mechanics, and researchers seeking a solid foundation in quantum theory will benefit from this discussion.

For those who have used this book


  • Total voters
    20
Messages
19,865
Reaction score
10,853

Code:
Contents

1. Fundamental Concepts
1.1 The Stern-Gerlach Experiment
1.2 kets, Bras, and Operators
1.3 Base Kets and Matrix Representations
1.4 Measurement, Observables, and the Uncertainty Relations
1.5 Change of Basis
1.6 Position, Momentum, and Translation
1.7 Wave Function in Position and Momentum Space
Problems

2.Quantum Dynamics
2.1 Time Evolution and the Schrödinger Equations
2.2 The Schrödinger Versus the Heisenberg Picture
2.3 Simple Harmonic Oscillator
2.4 Schrödinger's Wave Equation
2.5 Propagators and Feynman Path Integrals
2.6 Potential and Gauge Transformations
Problems

3.Theory of Angular Momentum
3.1 Rotations and Angular Momentum Commutation Relations
3.2 Spin 1/2 System and Finite Rotations
3.3 SO(3),SU(2),and Euler Rotations
3.4 Density Operators and Pure Versus Mixed Ensembles
3.6 Orbital Angular Momentum
3.7 Addition of Angular Momenta
3.8 Schwinger's Oscillator Model of Angular Momentum
3.9 Spin Correlation Measurements and Bell's Inequality
3.10 Tensor Operators
Problems

4.Symmetry in Quantum Mechanics
4.1 Symmetries, Conservation Laws and Degeneracies
4.2 Discrete Symmetries, Parity,or Space Inversion
4.3 Lattice Translation as a Discrete Symmetry
4.4 The Time-Reversal Discrete Symmetry
Problems

5.Approximation Methods
5.1 Time-Independent Perturbation Theory: Nondegenerate Case
5.2 Time-Independent Perturbation Theory: The Degenerate Case
5.3 Hydrogenlike Atoms: Fine Structure and the Zeeman Effect
5.4 Variational Methods
5.5 Time Dependent Potentials: The Interaction Picture
5.6 Time Dependent Perturbation Theory
5.7 Application to Interactions with the Classical Radiation Fields
5.8 Energy Shift and Decay Width
Problems

6.Identical Particles
6.1 Permutation Symmetry
6.2 Symmetrization Postulate
6.3 Two Electron System
6.4 The Helium Atom
6.5 Permutation Symmetry and Young Tableaux
Problems

7.Scattering Theory
7.1 The Lippmann-Schwinger Equation
7.2 The Born Approximation
7.3 Optical Theorem
7.4 Eikonal Approximation
7.5 Free Particle States: Plane Wave Versus Spherical Wave
7.6 Methods of Partial Waves
7.7 Low Energy Scattering and Bound States
7.8 Resonance Scattering
7.9 Identical Particle and Scattering
7.10 Symmetry Consideration in Scattering
7.11 Time Dependent Formulation of Scattering
7.12 Inelastic Electron Atom Scattering
7.13 Coulomb Scattering
Problems.
 
Last edited:
Physics news on Phys.org
Using this book right now, and it's a fantastic book. I actually bought the international edition, which is identical in content to the U.S. version, and the paper quality is surprisingly good. I'd recommend buying that if you don't mind softcover and have the chance (sorry Jim!).

Anyways, this is how a physics textbook should be written. There's not too much in the way of examples, which is unfourtunate, but all of Quantum Mechanics is built from the ground up starting with a handful of postulates and the experimental results of the Stern-Gerlach experiment. The author(s) shows how you can build up a consistent mathetmical framework to describe the results, and then you explore the theory in more and more depth and complexity.

Fantastic book and a pleasure to read.
 
dipole said:
Using this book right now, and it's a fantastic book. I actually bought the international edition, which is identical in content to the U.S. version, and the paper quality is surprisingly good. I'd recommend buying that if you don't mind softcover and have the chance (sorry Jim!).

Anyways, this is how a physics textbook should be written. There's not too much in the way of examples, which is unfourtunate, but all of Quantum Mechanics is built from the ground up starting with a handful of postulates and the experimental results of the Stern-Gerlach experiment. The author(s) shows how you can build up a consistent mathetmical framework to describe the results, and then you explore the theory in more and more depth and complexity.

Fantastic book and a pleasure to read.

I used the book for my two semester grad quantum mechanics course. Indeed, it's a great text. Chapters 1 ,2, 3, 4, and 6 are extremely well written.

Chapters 5 (especially the time ind. pert. theory section) and Chapter 7 leave a lot to be desired in terms of clarity and readability. They read more like a list of equations rather than a text one is meant to learn from. This is due to the fact that these chapters were pieced together by others after Sakurai had died.

Anyone trying to learn time independent perturbation theory or scattering theory (Chapt. 7) from this book would do well to supplement those sections with another text or detailed lecture notes.
 
G01 said:
I used the book for my two semester grad quantum mechanics course. Indeed, it's a great text. Chapters 1 ,2, 3, 4, and 6 are extremely well written.

Chapters 5 (especially the time ind. pert. theory section) and Chapter 7 leave a lot to be desired in terms of clarity and readability.

I became curious about this book for these subjects alone. Is it that bad? How does the treatment of scattering and approximation methods in Sakurai compare to Cohen-Tannoudji's?
 
Very Complete. I first switched between Merzbacher. Powell and Craseman, and Messiah in the late 70's (I kept switching when I did not like the explanation in each of them throughout the course(s). I did like using only Sakurai when I studied QM in the late 80's). I liked Powell and Craseman discussing the need for QM in the early 20th century and photoelectric effect etc. Sakurai exposes the student to a strictly quantum system from the beginning which I do not like as much.
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
6K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • Poll Poll
  • · Replies 13 ·
Replies
13
Views
13K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
11
Views
6K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
4K