- #1

- 41

- 0

I calculated the total mass of the rod by integrating. I got

M = 0.5(gamma)L^2

In the second part I found the moment of inertia with the axis of rotation to be at x=0, perpendicular to the rod. I don't know how to represent the integration symbol, so I'll use "|." I am integrating from 0 to L

I = |r^2dm

I = |L^2(gamma)L = (gamma)|L^3 = [(gamma)L^4]/4

= [2M/L^2][0.25L^4] = 0.5ML^2

The third part asks me to do the same thing for the rod, this time with the axis of rotation at the opposite end of the rod. I know I have to integrate from L to 0, but shouldn't this just give me the negative of my previous expression? I know it's wrong, but I don't know how the mass expression changes at the other end. Can someone help?