Moment of inertia of a uniform square plate

Click For Summary

Homework Help Overview

The discussion revolves around calculating the moment of inertia of a uniform square plate, specifically focusing on the setup and integration process involved in deriving the formula. Participants are examining the differences between their calculations and the expected result.

Discussion Character

  • Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • The original poster attempts to compute the moment of inertia by dividing the square into vertical strips and integrating, but expresses confusion over discrepancies in their result compared to the expected answer. Other participants request to see the work involved in the integral calculation.

Discussion Status

Some participants have successfully recalculated the integral and arrived at the expected answer, while others are exploring different methods and substitutions to simplify the process. There is an acknowledgment of the need for clarification and verification of the calculations.

Contextual Notes

Participants are working under the constraints of homework guidelines, which may limit the type of assistance they can provide to one another. There is an ongoing examination of the assumptions made in the setup of the problem.

lorenz0
Messages
151
Reaction score
28
Homework Statement
Find the moment of inertia of a uniform square plate of mass M and side L rotating around an axis through its diagonal.
Relevant Equations
##I=\int r^2 dm##
I placed my Oxy coordinate system at the center of the square, the ##x##-axis pointing rightwards and the ##y##-axis pointing upwards.
I divided the square into thin vertical strips, each of height ##h=2(\frac{L}{\sqrt{2}}-x)##, base ##dx## and mass ##dm=\sigma h dx=\frac{M}{L^2}2(\frac{L}{\sqrt{2}}-x)dx##, so ##I=2\int_{x=0}^{x=\frac{L}{\sqrt{2}}}x^2 \frac{M}{L^2}2(\frac{L}{\sqrt{2}}-x)dx=\frac{5}{12}ML^2##.

However, the solution, according to the exercise, should be ##\frac{1}{12}ML^2## but I haven't been able to see what I am doing wrong so I would appreciate if someone would help me see where my mistake is. Thanks.
 

Attachments

  • square.png
    square.png
    4.8 KB · Views: 213
Physics news on Phys.org
Please show your work in computing the integral.
 
  • Like
Likes   Reactions: lorenz0
Orodruin said:
Please show your work in computing the integral.
Well... doing the integral for the ##n##-th time now I get the correct answer. I don't know why I kept getting it wrong before ...
Here it is:

##I=2\int_{x=0}^{x=\frac{L}{\sqrt{2}}}x^2 \frac{M}{L^2}2(\frac{L}{\sqrt{2}}-x)dx=\frac{4M}{L^2}\int_{0}^{L/\sqrt{2}}(\frac{L}{\sqrt{2}}x^2-x^3)dx=\frac{4M}{L^2}\left(\frac{L}{\sqrt{2}}\int_{0}^{\frac{L}{\sqrt{2}}}x^2dx-\int_{0}^{\frac{L}{\sqrt{2}}}x^3dx\right)=\frac{4M}{L^2}\left( \frac{L}{3\sqrt{2}}\cdot\frac{L^3}{2^{3/2}}-\frac{1}{4}\cdot\frac{L^4}{4} \right)=\frac{4M}{L^2}\left( \frac{L^4}{3\cdot 4}-\frac{1}{4}\cdot\frac{L^4}{4} \right)=\frac{4M}{L^2}\cdot\frac{L^4}{4}\left(\frac{1}{3}-\frac{1}{4}\right)=\frac{1}{12}ML^2.##
 
lorenz0 said:
Well... doing the integral for the ##n##-th time now I get the correct answer. I don't know why I kept getting it wrong before ...
Here it is:

##I=2\int_{x=0}^{x=\frac{L}{\sqrt{2}}}x^2 \frac{M}{L^2}2(\frac{L}{\sqrt{2}}-x)dx=\frac{4M}{L^2}\int_{0}^{L/\sqrt{2}}(\frac{L}{\sqrt{2}}x^2-x^3)dx=\frac{4M}{L^2}\left(\frac{L}{\sqrt{2}}\int_{0}^{\frac{L}{\sqrt{2}}}x^2dx-\int_{0}^{\frac{L}{\sqrt{2}}}x^3dx\right)=\frac{4M}{L^2}\left( \frac{L}{3\sqrt{2}}\cdot\frac{L^3}{2^{3/2}}-\frac{1}{4}\cdot\frac{L^4}{4} \right)=\frac{4M}{L^2}\left( \frac{L^4}{3\cdot 4}-\frac{1}{4}\cdot\frac{L^4}{4} \right)=\frac{4M}{L^2}\cdot\frac{L^4}{4}\left(\frac{1}{3}-\frac{1}{4}\right)=\frac{1}{12}ML^2.##
It happens. Sometimes you just need a bit of a nudge.

The easiest way to do the integral is to use the substitution ##x = Ls/\sqrt 2##, the integral then becomes
$$
I = ML^2 \int_0^1(s^2-s^3)ds = ML^2 \left(\frac 13 - \frac 14\right) = \frac{ML^2}{12}.
$$

An even easier way of doing the problem is noting that, due to the symmetry of the square, the moment of inertia must be the same for any axis lying in the plane of the square and passing through the square center. You can therefore just as well compute the MoI relative to an axis through the center parallel to two sides (and orthogonal to the others). This will be the same as the MoI of a rod relative to its center, i.e.,
$$
I = 2\frac{M}{L}\int_0^{L/2} x^2 dx = \frac{2M}{L} \frac{(L/2)^3}3 = \frac{ML^2}{12}.
$$
Of course, the result is the same - as it should be.
 
  • Like
Likes   Reactions: lorenz0

Similar threads

Replies
8
Views
2K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
28
Views
2K
Replies
52
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K