Moment of inertia of a uniform square plate

Click For Summary
The moment of inertia of a uniform square plate was initially calculated incorrectly as \(\frac{5}{12}ML^2\) due to errors in the integral setup. Upon reevaluation, the correct calculation yielded \(\frac{1}{12}ML^2\), confirming the expected result. A substitution method was suggested, simplifying the integral to \(\int_0^1(s^2-s^3)ds\), which also leads to the correct answer. Additionally, leveraging the symmetry of the square allows for alternative calculations that yield the same moment of inertia. The discussion highlights the importance of careful integral computation and the benefits of recognizing geometric properties.
lorenz0
Messages
151
Reaction score
28
Homework Statement
Find the moment of inertia of a uniform square plate of mass M and side L rotating around an axis through its diagonal.
Relevant Equations
##I=\int r^2 dm##
I placed my Oxy coordinate system at the center of the square, the ##x##-axis pointing rightwards and the ##y##-axis pointing upwards.
I divided the square into thin vertical strips, each of height ##h=2(\frac{L}{\sqrt{2}}-x)##, base ##dx## and mass ##dm=\sigma h dx=\frac{M}{L^2}2(\frac{L}{\sqrt{2}}-x)dx##, so ##I=2\int_{x=0}^{x=\frac{L}{\sqrt{2}}}x^2 \frac{M}{L^2}2(\frac{L}{\sqrt{2}}-x)dx=\frac{5}{12}ML^2##.

However, the solution, according to the exercise, should be ##\frac{1}{12}ML^2## but I haven't been able to see what I am doing wrong so I would appreciate if someone would help me see where my mistake is. Thanks.
 

Attachments

  • square.png
    square.png
    4.8 KB · Views: 202
Physics news on Phys.org
Please show your work in computing the integral.
 
Orodruin said:
Please show your work in computing the integral.
Well... doing the integral for the ##n##-th time now I get the correct answer. I don't know why I kept getting it wrong before ...
Here it is:

##I=2\int_{x=0}^{x=\frac{L}{\sqrt{2}}}x^2 \frac{M}{L^2}2(\frac{L}{\sqrt{2}}-x)dx=\frac{4M}{L^2}\int_{0}^{L/\sqrt{2}}(\frac{L}{\sqrt{2}}x^2-x^3)dx=\frac{4M}{L^2}\left(\frac{L}{\sqrt{2}}\int_{0}^{\frac{L}{\sqrt{2}}}x^2dx-\int_{0}^{\frac{L}{\sqrt{2}}}x^3dx\right)=\frac{4M}{L^2}\left( \frac{L}{3\sqrt{2}}\cdot\frac{L^3}{2^{3/2}}-\frac{1}{4}\cdot\frac{L^4}{4} \right)=\frac{4M}{L^2}\left( \frac{L^4}{3\cdot 4}-\frac{1}{4}\cdot\frac{L^4}{4} \right)=\frac{4M}{L^2}\cdot\frac{L^4}{4}\left(\frac{1}{3}-\frac{1}{4}\right)=\frac{1}{12}ML^2.##
 
lorenz0 said:
Well... doing the integral for the ##n##-th time now I get the correct answer. I don't know why I kept getting it wrong before ...
Here it is:

##I=2\int_{x=0}^{x=\frac{L}{\sqrt{2}}}x^2 \frac{M}{L^2}2(\frac{L}{\sqrt{2}}-x)dx=\frac{4M}{L^2}\int_{0}^{L/\sqrt{2}}(\frac{L}{\sqrt{2}}x^2-x^3)dx=\frac{4M}{L^2}\left(\frac{L}{\sqrt{2}}\int_{0}^{\frac{L}{\sqrt{2}}}x^2dx-\int_{0}^{\frac{L}{\sqrt{2}}}x^3dx\right)=\frac{4M}{L^2}\left( \frac{L}{3\sqrt{2}}\cdot\frac{L^3}{2^{3/2}}-\frac{1}{4}\cdot\frac{L^4}{4} \right)=\frac{4M}{L^2}\left( \frac{L^4}{3\cdot 4}-\frac{1}{4}\cdot\frac{L^4}{4} \right)=\frac{4M}{L^2}\cdot\frac{L^4}{4}\left(\frac{1}{3}-\frac{1}{4}\right)=\frac{1}{12}ML^2.##
It happens. Sometimes you just need a bit of a nudge.

The easiest way to do the integral is to use the substitution ##x = Ls/\sqrt 2##, the integral then becomes
$$
I = ML^2 \int_0^1(s^2-s^3)ds = ML^2 \left(\frac 13 - \frac 14\right) = \frac{ML^2}{12}.
$$

An even easier way of doing the problem is noting that, due to the symmetry of the square, the moment of inertia must be the same for any axis lying in the plane of the square and passing through the square center. You can therefore just as well compute the MoI relative to an axis through the center parallel to two sides (and orthogonal to the others). This will be the same as the MoI of a rod relative to its center, i.e.,
$$
I = 2\frac{M}{L}\int_0^{L/2} x^2 dx = \frac{2M}{L} \frac{(L/2)^3}3 = \frac{ML^2}{12}.
$$
Of course, the result is the same - as it should be.
 
Thread 'Correct statement about size of wire to produce larger extension'
The answer is (B) but I don't really understand why. Based on formula of Young Modulus: $$x=\frac{FL}{AE}$$ The second wire made of the same material so it means they have same Young Modulus. Larger extension means larger value of ##x## so to get larger value of ##x## we can increase ##F## and ##L## and decrease ##A## I am not sure whether there is change in ##F## for first and second wire so I will just assume ##F## does not change. It leaves (B) and (C) as possible options so why is (C)...

Similar threads

Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
52
Views
4K
Replies
28
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K