Moment of inertia of a uniform square plate

Click For Summary
SUMMARY

The moment of inertia (MoI) of a uniform square plate about an axis through its center is calculated to be I = \frac{1}{12}ML^2. The initial calculation by the user yielded I = \frac{5}{12}ML^2, which was corrected through repeated integration and the application of symmetry principles. The integral was simplified using the substitution x = Ls/\sqrt{2}, leading to the correct result. This demonstrates the importance of both accurate integration techniques and understanding geometric properties in physics.

PREREQUISITES
  • Understanding of moment of inertia concepts
  • Familiarity with integral calculus
  • Knowledge of geometric properties of shapes
  • Experience with substitution methods in integration
NEXT STEPS
  • Study the derivation of moment of inertia for various geometric shapes
  • Learn advanced integration techniques, including substitution and integration by parts
  • Explore the application of symmetry in physics problems
  • Review the properties of uniform plates and their physical implications
USEFUL FOR

Students and professionals in physics, engineering, and mathematics who are involved in mechanics, particularly those focusing on rotational dynamics and moment of inertia calculations.

lorenz0
Messages
151
Reaction score
28
Homework Statement
Find the moment of inertia of a uniform square plate of mass M and side L rotating around an axis through its diagonal.
Relevant Equations
##I=\int r^2 dm##
I placed my Oxy coordinate system at the center of the square, the ##x##-axis pointing rightwards and the ##y##-axis pointing upwards.
I divided the square into thin vertical strips, each of height ##h=2(\frac{L}{\sqrt{2}}-x)##, base ##dx## and mass ##dm=\sigma h dx=\frac{M}{L^2}2(\frac{L}{\sqrt{2}}-x)dx##, so ##I=2\int_{x=0}^{x=\frac{L}{\sqrt{2}}}x^2 \frac{M}{L^2}2(\frac{L}{\sqrt{2}}-x)dx=\frac{5}{12}ML^2##.

However, the solution, according to the exercise, should be ##\frac{1}{12}ML^2## but I haven't been able to see what I am doing wrong so I would appreciate if someone would help me see where my mistake is. Thanks.
 

Attachments

  • square.png
    square.png
    4.8 KB · Views: 211
Physics news on Phys.org
Please show your work in computing the integral.
 
  • Like
Likes   Reactions: lorenz0
Orodruin said:
Please show your work in computing the integral.
Well... doing the integral for the ##n##-th time now I get the correct answer. I don't know why I kept getting it wrong before ...
Here it is:

##I=2\int_{x=0}^{x=\frac{L}{\sqrt{2}}}x^2 \frac{M}{L^2}2(\frac{L}{\sqrt{2}}-x)dx=\frac{4M}{L^2}\int_{0}^{L/\sqrt{2}}(\frac{L}{\sqrt{2}}x^2-x^3)dx=\frac{4M}{L^2}\left(\frac{L}{\sqrt{2}}\int_{0}^{\frac{L}{\sqrt{2}}}x^2dx-\int_{0}^{\frac{L}{\sqrt{2}}}x^3dx\right)=\frac{4M}{L^2}\left( \frac{L}{3\sqrt{2}}\cdot\frac{L^3}{2^{3/2}}-\frac{1}{4}\cdot\frac{L^4}{4} \right)=\frac{4M}{L^2}\left( \frac{L^4}{3\cdot 4}-\frac{1}{4}\cdot\frac{L^4}{4} \right)=\frac{4M}{L^2}\cdot\frac{L^4}{4}\left(\frac{1}{3}-\frac{1}{4}\right)=\frac{1}{12}ML^2.##
 
lorenz0 said:
Well... doing the integral for the ##n##-th time now I get the correct answer. I don't know why I kept getting it wrong before ...
Here it is:

##I=2\int_{x=0}^{x=\frac{L}{\sqrt{2}}}x^2 \frac{M}{L^2}2(\frac{L}{\sqrt{2}}-x)dx=\frac{4M}{L^2}\int_{0}^{L/\sqrt{2}}(\frac{L}{\sqrt{2}}x^2-x^3)dx=\frac{4M}{L^2}\left(\frac{L}{\sqrt{2}}\int_{0}^{\frac{L}{\sqrt{2}}}x^2dx-\int_{0}^{\frac{L}{\sqrt{2}}}x^3dx\right)=\frac{4M}{L^2}\left( \frac{L}{3\sqrt{2}}\cdot\frac{L^3}{2^{3/2}}-\frac{1}{4}\cdot\frac{L^4}{4} \right)=\frac{4M}{L^2}\left( \frac{L^4}{3\cdot 4}-\frac{1}{4}\cdot\frac{L^4}{4} \right)=\frac{4M}{L^2}\cdot\frac{L^4}{4}\left(\frac{1}{3}-\frac{1}{4}\right)=\frac{1}{12}ML^2.##
It happens. Sometimes you just need a bit of a nudge.

The easiest way to do the integral is to use the substitution ##x = Ls/\sqrt 2##, the integral then becomes
$$
I = ML^2 \int_0^1(s^2-s^3)ds = ML^2 \left(\frac 13 - \frac 14\right) = \frac{ML^2}{12}.
$$

An even easier way of doing the problem is noting that, due to the symmetry of the square, the moment of inertia must be the same for any axis lying in the plane of the square and passing through the square center. You can therefore just as well compute the MoI relative to an axis through the center parallel to two sides (and orthogonal to the others). This will be the same as the MoI of a rod relative to its center, i.e.,
$$
I = 2\frac{M}{L}\int_0^{L/2} x^2 dx = \frac{2M}{L} \frac{(L/2)^3}3 = \frac{ML^2}{12}.
$$
Of course, the result is the same - as it should be.
 
  • Like
Likes   Reactions: lorenz0

Similar threads

Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
52
Views
4K
Replies
28
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K