Most probable velocity from Maxwell-Boltzmann distribution

  • Thread starter Thread starter TensorCalculus
  • Start date Start date
  • Tags Tags
    Thermodynaics
AI Thread Summary
The discussion revolves around deriving the most probable velocity (v_mp) from the Maxwell-Boltzmann distribution, specifically the formula v_mp = √(2k_bT/m). The user encountered a mistake resulting in a negative value under the square root during their derivation. They realized that the error stemmed from mismanaging algebraic signs while manipulating the equations. Suggestions were made to simplify the calculation by substituting variables to make the equation easier to handle. The user acknowledged their oversight and expressed gratitude for the guidance.
TensorCalculus
Gold Member
Messages
272
Reaction score
381
Homework Statement
Derive the formula ##v_mp = \sqrt{\frac{2k_bT}{m}}##
Relevant Equations
##f(v)=4\pi(\frac{m}{2k_BT})^{\frac 3 2} v^2 e^{\frac{-E}{k_BT}}##
product rule: ##\frac{d}{dx} (uv) = u'v + v'u##
This wasn't really a homework problem: I just randomly realised that I had been using the formula ##v_{mp} = \sqrt{\frac{2k_bT}{m}}## without actually knowing where it came from, so I decided to try and derive it. I got pretty close but I think I made some sort of silly mistake because the answer I got was the negative of what I should have gotten. I spent quite a while staring at it yesterday trying to figure out what went wrong, to no avail, and tried the same thing today... I fear I have tunnel vision. The mistake is probably a really small and dumb one, but I'm having quite a bit of trouble finding it :cry:

Using the idea that ##v_mp## would be when the plot of the Maxwell-Boltzmann distribution is at a maximum for that given temperature and mass, and the derivative is 0 at maxima:
$$ \frac{d[f(v)]}{dv} = 0$$
$$\frac d {dv} (4\pi(\frac{m}{2k_BT})^{\frac 3 2} v^2 e^{\frac{-mv^2}{2k_BT}}) = 0$$
$$\frac d{dv} (v^2 e^{\frac{-mv^2}{2k_BT}}) = 0$$
$$v^2(\frac{-mv}{k_BT})(e^{\frac{-mv^2}{2k_BT}}) + 2v(e^{\frac{-mv^2}{2k_BT}}) = 0$$
$$v(-\frac{mv}{k_BT}) + 2 = 0$$
$$v^2 = \frac{2}{-\frac{m}{k_BT}} = -\frac{2k_BT}{m}$$
$$v=\sqrt{-\frac {2k_BT}{m}}$$
Somehow I got a negative inside the square root: where did I go wrong?
 
Physics news on Phys.org
TensorCalculus said:
where did I go wrong?
Screen Shot 2025-08-13 at 7.39.44 AM.webp
See figure on the right. Where did the ##v^2## in the last equation come from and why is there no sign change when you move the ##2## to the right hand side?

It looks like you did too much algebra in your head.
 
  • Informative
Likes TensorCalculus
1755089807504.webp



From
1755089932728.webp


$$\frac{d}{dv} F = 2v \frac{d}{dv^2} F = 0 $$
It is easier to calculate.
 
Last edited:
  • Informative
Likes TensorCalculus
kuruman said:
View attachment 364375See figure on the right. Where did the ##v^2## in the last equation come from and why is there no sign change when you move the ##2## to the right hand side?

It looks like you did too much algebra in your head.
The ##v^2## came from pulling the v out from the numerator of the fraction in the first line.
I see my mistake now :cry: how did I not spot it :cry:. All I had to do was realise that subtracting the two meant that it would be negative on the other side... whoops...
anuttarasammyak said:
View attachment 364376


From
View attachment 364377

$$\frac{d}{dv} F = 2v \frac{d}{dv^2} F = 0 $$
It is easier to calculate.
yeah... I don't know how I managed that.
What do you mean by the last bit where you talk about that being easier to calculate?
 
Formula in ( ) , I referred as F, has v^2 only, no single v. Try replacing v^2 with x in my proposal. The equation would become easier to handle.
 
  • Like
Likes TensorCalculus
Ah right: I'll give it a shot tomorrow morning, thank you for the suggestion!
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top