Multiplication of Taylor and Laurent series

Click For Summary
SUMMARY

The discussion focuses on the multiplication of Taylor and Laurent series to extract the coefficient of the term \( \frac{1}{p} \) in the resulting series. The first series is given by \( \frac{1}{2}\sum^{\infty}_{n=0}\frac{(-1)^n}{n+1}(\frac{1}{p^2})^{n+1} \), while the second series is \( \sum^{\infty}_{k=0}\frac{p^kt^k}{k!} \). Participants clarify that the coefficient \( f(t) \) in front of \( \frac{1}{p} \) is \( \frac{1-\cos t}{t} \). The discussion emphasizes the need to find this coefficient without explicitly writing out all sums, suggesting a more efficient approach to series manipulation.

PREREQUISITES
  • Understanding of Taylor series and Laurent series
  • Familiarity with series multiplication techniques
  • Knowledge of trigonometric series, specifically \( \cos t \)
  • Basic calculus concepts, including limits and summation
NEXT STEPS
  • Explore the derivation of coefficients in series products
  • Study the properties of the cosine series and its relation to Taylor expansions
  • Learn about generating functions and their applications in series manipulation
  • Investigate advanced techniques in series convergence and manipulation
USEFUL FOR

Mathematicians, physicists, and students engaged in advanced calculus or series analysis, particularly those interested in series multiplication and coefficient extraction techniques.

LagrangeEuler
Messages
711
Reaction score
22
Homework Statement
Find coefficient which multiply ##\frac{1}{p}## in product of series. Coefficient is function of ##t##.
[tex]\frac{1}{2}\sum^{\infty}_{n=0}\frac{(-1)^n}{n+1}(\frac{1}{p^2})^{n+1}\,\sum^{\infty}_{k=0}\frac{p^kt^k}{k!}[/tex]
Namely product of two series will be new series that will contain the sum of terms of ##p^l## where ##l## are integers. I want to find only the term ##f(t)\frac{1}{p}## in the product.
Relevant Equations
I think that the sum of terms that multiply ##1/p## in product of two series should be ##\frac{1-\cos t}{t}##.
First series
\frac{1}{2}\sum^{\infty}_{n=0}\frac{(-1)^n}{n+1}(\frac{1}{p^2})^{n+1}= \frac{1}{2}(\frac{1}{p^2}-\frac{1}{2p^4}+\frac{1}{3p^6}-\frac{1}{4p^8}+...)
whereas second one is
\sum^{\infty}_{k=0}\frac{p^kt^k}{k!}=1+pt+\frac{p^2t^2}{2!}+\frac{p^3t^3}{3!}+\frac{p^4t^4}{4!}+\frac{p^5t^5}{5!}+....
I multiply two series and I want to get coefficient that multiply ##1/p## in the series that I get as a product. I will get this type of term if I multiply ##\frac{1}{p^2}## with ##p##, ##\frac{1}{p^4}## with ##p^3##... And I need to sum all these terms.
I want to see what is coefficient that multiplies ##\frac{1}{p}## in the expansion of product of two series. That coefficient is function of ##t##.
First term I get by multiplying ##\frac{1}{2p^2}## and ##pt## and it is ##\frac{t}{2}##.
Second term I get by multiplying ##-\frac{1}{4p^4}## and ##\frac{p^3t^3}{3!}## and it is ##-\frac{t^3}{4!}##
Third term will be ##\frac{t^5}{6!}##...
I think that the sum should be ##\frac{1-\cos t}{t}##. Is there some easy way to get it without writing down all the sums?
 
Last edited:
Physics news on Phys.org
Please render the complete problem statement. I now see four variables ( ##k, n, p, t ## ) and there are two summation indices ( ##n, k ## ). How can the result not depend on ##p## ?

And what do you mean with
LagrangeEuler said:
I want to see what stands in front of ##1/p##

And (hint :wink: ): do you know the series for ##e^x## ?

##\ ##
 
I write down two series. Yes, I know. But I shouldn't go back. If I multiply two series and then asked
what is a coefficient that multiplies ##1/p## in the product of two series?
It is ##f(t)\frac{1}{p}## and ##f(t)=\frac{1-\cos t}{t}##. But I have problem to derive ##f(t)## from series multiplication. I rewrite problem statement a bit. I hope that now is more clear. ##n,k## are just sumational dummy indices.
 
LagrangeEuler said:
I hope that now is more clear.
Not to me.
BvU said:
Please render the complete problem statement.
As it was given to you. Verbatim

##\ ##
 
BvU said:
Not to me.

As it was given to you. Verbatim
 
BvU said:
Please render the complete problem statement. I now see four variables ( ##k, n, p, t ## ) and there are two summation indices ( ##n, k ## ). How can the result not depend on ##p## ?
The problem is only asking for the coefficient of the 1/p term of the Laurent series, which is not a function of p.
LagrangeEuler said:
I think that the sum should be ##\frac{1-\cos t}{t}##. Is there some easy way to get it without writing down all the sums?
Not in general. I have not checked the details of your work, but I think it is the approach they had in mind.
 
  • Like
Likes   Reactions: BvU and LagrangeEuler
I tried to edit it once again. I multiply two series. I will get some third series which will be
f(t)\frac{1}{p}+...
I gave in the statement both series that I multiply in order to get the third one. And I need to find ##f(t)##.
 
Why don' t you pursuit your way to get the coefficient of 1/p,
\frac{1}{2}\sum_{n=1}^\infty \frac{t^{2n-1}}{(2n-1)!}\frac{(-1)^{n+1}}{n}
and take a look at it?

You see terms n=1 and n=2 are the same as you have got.
 
Last edited:
  • Like
Likes   Reactions: LagrangeEuler
Ah, I finally understand the problem statement :doh:
Sorry it took me a while, and I second @anuttarasammyak . Whether that qualifies as 'some easy way to get it without writing down all the sums' is subjective :wink:

:smile:

##\ ##
 
  • Like
Likes   Reactions: LagrangeEuler
  • #10
I can do this in that fashion, however, I would like to try to get this sum immediately without using induction. Can you show me how to obtain this by playing with the sums?
 
  • #11
From the formula of #8
\frac{1}{t}[1-\sum_{n=0}^\infty \frac{(-1)^nt^{2n}}{(2n)!}]
 
Last edited:
  • #12
I can not get this sum from the product. Can you please show me how to get this? Without multiplying term by term.
 
  • #13
Just do what you described in your original post. For each value of ##n##, pick off just the term in the second series so the product is a ##p^{-1}## term. The first series contributes ##p^{-(2n+2)}##, so you want the term where ##k=2n+1## from the second series.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 16 ·
Replies
16
Views
2K
Replies
6
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K