Multiplying divergent integrals using Hardy fields approach

Click For Summary

Discussion Overview

The discussion revolves around the multiplication of divergent integrals using a Hardy fields approach. Participants explore the implications of this method, particularly in the context of improper integrals and their regularized values, while considering various examples and potential generalizations.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant proposes a method for multiplying divergent integrals, specifically using the example of ##\int_0^\infty e^x dx\cdot\int_0^\infty e^x dx## and discusses the partial sums of these integrals.
  • Another participant points out that transitioning from proper to improper integrals requires taking limits, noting that the product of the integrals is unbounded and positive.
  • There is a discussion about the term "germs" used to describe the products of the partial sums, with one participant expressing unfamiliarity with the term.
  • Several examples of products of divergent integrals are provided, illustrating the proposed method's application to various functions.
  • One participant questions the utility of the method given that all integrals discussed diverge.
  • Another participant mentions the use of Dirichlet regularization in their Mathematica code, suggesting that it is a workaround for a glitch encountered.
  • Concerns are raised about the accuracy of the method when specific functions are used, such as ##f[x]=Exp[x]## and ##g[x]=Exp[-x}##.

Areas of Agreement / Disagreement

Participants express differing views on the validity and utility of the proposed method for multiplying divergent integrals. While some find the approach interesting, others question its practicality and the implications of using divergent integrals.

Contextual Notes

Limitations include the dependence on specific regularization techniques and the unresolved nature of the mathematical steps involved in the proposed method. The discussion does not reach a consensus on the effectiveness or correctness of the approach.

Anixx
Messages
88
Reaction score
11
I wonder if the following makes sense.

Suppose we want to multiply ##\int_0^\infty e^x dx\cdot\int_0^\infty e^x dx##.

The partial sums of these improper integrals are ##\int_0^x e^x dx=e^x-1##.

Now we multiply the germs at infinity of these partial sums: ##(e^x-1)(e^x-1)=-2 e^x+e^{2 x}+1##.

Now we find the integral for which the germ at infinity of the partial sum is equal to this product by solving equation for ##u(x)##:

##\int_0^x u(x)dx=-2 e^x+e^{2 x}+1.##

We get ##u(x)=2 e^{2 x}-2 e^x##, so the answer is

##\int_0^\infty e^x dx\cdot\int_0^\infty e^x dx=\int_0^\infty (2 e^{2 x}-2 e^x)dx=2\int_0^\infty e^{2 x}dx-2\int_0^\infty e^x dx.##

This all looks very elementary to me and I have made several programs in Mathematica that can calculate products of divergent integrals this way. It can be even generalized beyond Hardy fields (so as to include periodic functions like sine for instance).

One can see using this method that

\begin{align*}
\int _0^{\infty }1dx\cdot \int _0^{\infty }1dx&{}=2\int_0^{\infty } x \, dx \\
\int _0^{\infty }xdx\cdot \int _0^{\infty }xdx&{}=\int_0^{\infty } x^3 \, dx \\
\int _0^{\infty }xdx\cdot \int _0^{\infty }e^xdx&{}=\int_0^{\infty } \frac{e^x x^2}{2} \, dx-\int_0^{\infty } x \, dx+\int_0^{\infty } e^x x \, dx\\
\int _0^{\infty }e^xdx\cdot \int _0^{\infty }1dx&{}=\int_0^{\infty } e^x \, dx+\int_0^{\infty } e^x x \, dx-\int_0^{\infty } 1 \, dx\\
\int _0^{\infty }\frac{dx}{x+1}\cdot \int _0^{\infty }\frac{dx}{x+1}&{}=\int_0^{\infty } \frac{2 \log (x+1)}{x+1} \, dx \\
\int _0^{\infty }\log x\,dx\cdot \int _0^{\infty }1dx&{}=2\int_0^{\infty } x \log x \, dx-\int_0^{\infty } x \, dx \\
\int _0^{\infty }\log x\,dx\cdot \int _0^{\infty }xdx&{}=\frac{3}{2}\int_0^{\infty } x^2 \log x \, dx-\int_0^{\infty } x^2 \, dx\\
\int _0^{\infty }\log x\,dx\cdot \int _0^{\infty }\log x\,dx&{}=2\int_0^{\infty } x \log ^2 x \, dx-2\int_0^{\infty } x \log x \, dx\\
\int _0^{\infty }x \log x\,dx\cdot \int _0^{\infty }\log x\,dx&{}=\frac{3}{2}\int_0^{\infty } x^2 \log ^2(x) \, dx-\frac{5}{4}\int_0^{\infty } x^2 \log x \, dx\\
\int _0^{\infty }e^xdx\cdot \int _0^{\infty }\log x\,dx&{}=\int_0^{\infty } e^x \log x \, dx+\int_0^{\infty } e^x x \log x \, dx-\int_0^{\infty } e^x x \, dx-\int_0^{\infty } \log x \, dx
\end{align*}

etc.

It seems, the regularized value of product of divergent integrals defined this way is the product of regularized values of the factors, for instance, in our case, ##\operatorname{reg}\left(\int _0^{\infty }e^xdx\cdot \int _0^{\infty }e^xdx\right)=(-1)(-1)=1##. This can be seen using the Laplace transform, for instance.

I wonder whether this has been already suggested and whether it makes sense?

Code for divergent integrals multiplicator for the Mathematica system:

Code:
    f[x_] := Exp[x]
    g[x_] := Exp[x]
    u[x_] := D[
       Integrate[f[t], {t, 0, x}] Integrate[g[t], {t, 0, x}] // Normal,
       x] // Evaluate
    reg := Limit[
        s Sum[f[s x], {x, 1, Infinity}, Regularization -> "Dirichlet"] //
         FullSimplify, s -> 0] Limit[
        s Sum[g[s x], {x, 1, Infinity}, Regularization -> "Dirichlet"] //
         FullSimplify, s -> 0] // Evaluate
    regu := Limit[
       s Sum[u[s x], {x, 1, Infinity}, Regularization -> "Dirichlet"] //
        FullSimplify, s -> 0] // Evaluate
    Inactivate[
        Integrate[f[x], {x, 0, Infinity}]\[CenterDot]Integrate[
          g[x], {x, 0, Infinity}], Integrate] ==
       reg - regu +
        Distribute[
         Integrate[ExpandAll[FullSimplify[u[x]]], {x, 0, \[Infinity]}]] //
       ExpandAll // Quiet
    Inactivate[
      Reg[Integrate[f[x], {x, 0, Infinity}]\[CenterDot]Integrate[
         g[x], {x, 0, Infinity}]], Integrate] == reg
 
Physics news on Phys.org
Anixx said:
I wonder if the following makes sense.
Suppose we want to multiply ##\int_0^\infty e^x dx\cdot\int_0^\infty e^x dx##.

The partial sums of these improper integrals are ##\int_0^x e^x dx=e^x-1##.
Yes, but to go from this proper definite integral to the improper with an infinite limit requires taking the limit as x increases without bound. Doing so shows that each integral is unbounded and positive, so the product is also unbounded and positive.

A small quibble is that you have used x both as a dummy variable in the integral as well as one of the integration limits. The usual practice is to use a different letter for one of these.
Anixx said:
Now we multiply the germs at infinity of these partial sums: ##(e^x-1)(e^x-1)=-2 e^x+e^{2 x}+1##.
Germs? I'm not familiar with that term. Is it a synonym for antiderivative? In any case, once you take the limit, the expression on the right has a "limit" of infinity.
Anixx said:
Now we find the integral for which the germ at infinity of the partial sum is equal to this product by solving equation for ##u(x)##:

##\int_0^x u(x)dx=-2 e^x+e^{2 x}+1.##

We get ##u(x)=2 e^{2 x}-2 e^x##, so the answer is

##\int_0^\infty e^x dx\cdot\int_0^\infty e^x dx=\int_0^\infty (2 e^{2 x}-2 e^x)dx=2\int_0^\infty e^{2 x}dx-2\int_0^\infty e^x dx.##

This all looks very elementary to me and I have made several programs in Mathematica that can calculate products of divergent integrals this way. It can be even generalized beyond Hardy fields (so as to include periodic functions like sine for instance).

One can see using this method that

\begin{align*}
\int _0^{\infty }1dx\cdot \int _0^{\infty }1dx&{}=2\int_0^{\infty } x \, dx \\
\int _0^{\infty }xdx\cdot \int _0^{\infty }xdx&{}=\int_0^{\infty } x^3 \, dx \\
\int _0^{\infty }xdx\cdot \int _0^{\infty }e^xdx&{}=\int_0^{\infty } \frac{e^x x^2}{2} \, dx-\int_0^{\infty } x \, dx+\int_0^{\infty } e^x x \, dx\\
\int _0^{\infty }e^xdx\cdot \int _0^{\infty }1dx&{}=\int_0^{\infty } e^x \, dx+\int_0^{\infty } e^x x \, dx-\int_0^{\infty } 1 \, dx\\
\int _0^{\infty }\frac{dx}{x+1}\cdot \int _0^{\infty }\frac{dx}{x+1}&{}=\int_0^{\infty } \frac{2 \log (x+1)}{x+1} \, dx \\
\int _0^{\infty }\log x\,dx\cdot \int _0^{\infty }1dx&{}=2\int_0^{\infty } x \log x \, dx-\int_0^{\infty } x \, dx \\
\int _0^{\infty }\log x\,dx\cdot \int _0^{\infty }xdx&{}=\frac{3}{2}\int_0^{\infty } x^2 \log x \, dx-\int_0^{\infty } x^2 \, dx\\
\int _0^{\infty }\log x\,dx\cdot \int _0^{\infty }\log x\,dx&{}=2\int_0^{\infty } x \log ^2 x \, dx-2\int_0^{\infty } x \log x \, dx\\
\int _0^{\infty }x \log x\,dx\cdot \int _0^{\infty }\log x\,dx&{}=\frac{3}{2}\int_0^{\infty } x^2 \log ^2(x) \, dx-\frac{5}{4}\int_0^{\infty } x^2 \log x \, dx\\
\int _0^{\infty }e^xdx\cdot \int _0^{\infty }\log x\,dx&{}=\int_0^{\infty } e^x \log x \, dx+\int_0^{\infty } e^x x \log x \, dx-\int_0^{\infty } e^x x \, dx-\int_0^{\infty } \log x \, dx
\end{align*}

etc.
Every one of the integrals above diverges, so how is this useful?
Anixx said:
It seems, the regularized value of product of divergent integrals defined this way is the product of regularized values of the factors, for instance, in our case, ##\operatorname{reg}\left(\int _0^{\infty }e^xdx\cdot \int _0^{\infty }e^xdx\right)=(-1)(-1)=1##. This can be seen using the Laplace transform, for instance.

I wonder whether this has been already suggested and whether it makes sense?
 
Can you be very specific aboutv what regularization technique you are using?
 
Office_Shredder said:
Can you be very specific aboutv what regularization technique you are using?
Well, this post is not about regularization really, but in the code I use Dirichlet regularization, provided by Mathematica system. This is not necessary though, it is a workaround for some strange glitch or a bug that I encountered.

Below is a more simple code that does the same:
Code:
f[x_] := Exp[x]
g[x_] := Exp[x]
u[x_] := D[
    Integrate[f[t], {t, 0, x}] Integrate[g[t], {t, 0, x}] // Normal,
    x] // FullSimplify // Evaluate
Inactivate[
    Integrate[f[x], {x, 0, Infinity}]\[CenterDot]Integrate[
      g[x], {x, 0, Infinity}], Integrate] ==
   Distribute[
    Integrate[ExpandAll[FullSimplify[u[x]]], {x, 0, Infinity}]] //
  ExpandAll // Quiet

The only problem with it is that it gives a wrong answer when f[x]=Exp[x] and g[x]=Exp[-x] (should be greater by 1), due to the discontinuity of some intermediate expression of 0/0 type. In all other cases the result is the same as in the longer code.
 
Last edited:

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K