Multiplying polynomials in Mathematica

SMA_01
Messages
215
Reaction score
0
I have two polynomials

(1+x+x^2+x^3) and (1+x+x^2+x^3+x^4), I'm trying to figure out how to compute the product in Mathematica, but it's not working.

Any help is appreciated, thanks.
 
Physics news on Phys.org
Expand[(1+x+x^2+x^3)*(1+x+x^2+x^3+x^4)]
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top