Multiplying Uncertainties in Different Units

  • Context: Undergrad 
  • Thread starter Thread starter e2m2a
  • Start date Start date
  • Tags Tags
    Uncertainties Units
Click For Summary

Discussion Overview

The discussion revolves around the process of multiplying quantities with different units while incorporating their uncertainties, specifically in the context of calculating impulse from force and time measurements. Participants explore the application of uncertainty propagation formulas and seek clarification on the calculations involved.

Discussion Character

  • Technical explanation
  • Homework-related
  • Mathematical reasoning

Main Points Raised

  • One participant seeks clarification on how to compute the product of force and time with their associated uncertainties.
  • Another participant suggests using the standard propagation of uncertainty formula, indicating that the units will work out naturally.
  • A later reply emphasizes the importance of understanding partial derivatives in the context of uncertainty propagation and provides specific values for force and time.
  • There is a discussion about whether the uncertainties in force and time are correlated, with one participant suggesting that if they are uncorrelated, a specific term in the uncertainty formula can be ignored.
  • Participants discuss the concept of impulse and its relationship to the uncertainties in force and time measurements.

Areas of Agreement / Disagreement

Participants express varying levels of understanding regarding the application of the uncertainty propagation formula. While some provide technical explanations, others request concrete examples, indicating that the discussion remains unresolved in terms of clarity and consensus on the calculations.

Contextual Notes

There are limitations in the discussion regarding the assumptions made about the correlation of uncertainties and the need for concrete examples to clarify the mathematical steps involved.

e2m2a
Messages
354
Reaction score
13
TL;DR
How do you multiply quantities with their uncertainties when the units are different?
I could not find any clear explanation on multiplying quantities with different units while including their uncertainties. For example, how would you compute the following product with their uncertainties? 3.4 Newtons +/- .12 Newtons x 1.7 seconds +/- .23 seconds
 
Physics news on Phys.org
You treat it the same as any other uncertainty. You have the formula ##f(F,t)=F \ t## so according to the standard propagation of uncertainty $$\sigma^2_f=\left( \frac{\partial f}{\partial F} \right)^2 \sigma^2_F + \left( \frac{\partial f}{\partial t} \right)^2 \sigma^2_t + 2 \frac{\partial f}{\partial F} \frac{\partial f}{\partial t} \sigma_{Ft}$$

Notice that the units work out naturally.
 
Dale said:
You treat it the same as any other uncertainty. You have the formula ##f(F,t)=F \ t## so according to the standard propagation of uncertainty $$\sigma^2_f=\left( \frac{\partial f}{\partial F} \right)^2 \sigma^2_F + \left( \frac{\partial f}{\partial t} \right)^2 \sigma^2_t + 2 \frac{\partial f}{\partial F} \frac{\partial f}{\partial t} \sigma_{Ft}$$

Notice that the units work out naturally.
Sorry, I don't understand your reply. A little over my head. Could you give me a concrete example?
 
e2m2a said:
Sorry, I don't understand your reply. A little over my head. Could you give me a concrete example?
In your case, if the uncertainty in ##F## is un correlated with the uncertainty in ##t## then ##\sigma_{Ft}=0## so the last term drops out. Then $$\frac{\partial f}{\partial F}=t$$ and $$\frac{\partial f}{\partial t}=F$$ and you already know ##F = 3.4##, ##\sigma_F = 0.12##, ##t = 1.7##, and ##\sigma_t= 0.23##. So just plug in and calculate.
 
  • Like
Likes   Reactions: Ibix
e2m2a said:
Sorry, I don't understand your reply. A little over my head. Could you give me a concrete example?
You are trying to calculate a quantity called impulse, ##I##, which satisfies ##I=Ft##. The standard error in ##I## is what you are looking for, and is ##\sigma_I## (@Dale called this ##\sigma_f##). This relates to the standard errors in ##F## and ##t##, ##\sigma_F## and ##\sigma_t## respectively, and their covariance, ##\sigma_{Ft}##, through the formula Dale gave.

You gave us ##\sigma_F## and ##\sigma_t##. Do you know how to calculate the partial differentials? If not, it's really easy - ##\frac{\partial I}{\partial F}## is the derivative of ##I## with respect to ##F## when everything else is treated as a constant. Finally, do you think your measurement error in ##F## depends on your measurement error in ##t##? If yes, you need to measure the covariance. If not (which I would think is the case) then ##\sigma_{Ft}=0## and you can ignore the last term.

Plug in the numbers - you'll find that each term has units of ##(\mathrm{Ns})^2##, so the units work out.
 
  • Like
Likes   Reactions: Dale

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 0 ·
Replies
0
Views
4K