Multivariable Functions - stationary points

Click For Summary

Homework Help Overview

The discussion revolves around finding the stationary points of the multivariable function f(x,y) = (x+y)/(x^2+2y^2+6). Participants are exploring the necessary conditions for stationary points, specifically the first partial derivatives.

Discussion Character

  • Exploratory, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants discuss the calculation of first partial derivatives and the challenges in rearranging them for substitution. There are inquiries about the specific forms of the derivatives obtained and how to solve the resulting equations simultaneously.

Discussion Status

Some participants have provided partial derivatives and suggested methods for solving the equations, including the use of the quadratic formula. There is a recognition of the complexity involved in simplifying the equations and a variety of approaches being explored without a clear consensus on the best method.

Contextual Notes

There is mention of potential confusion regarding the nature of the derivatives and the necessity of handling the equations carefully, particularly when dealing with the denominators in the derivatives.

hex.halo
Messages
13
Reaction score
0

Homework Statement



For:

f(x,y)=(x+y)/(x^2+2y^2+6)

Find the stationary points of f

Homework Equations





The Attempt at a Solution



To find a stationary point the first partial derivative must equal zero, correct?

I've found the first partial derivatives using the quotient rule but my problem is, I can't rearrange them for y= or x= so I can substitute them into one equation and solve for x or y. What do I do now?
 
Physics news on Phys.org
Okay, what partial derivatives did you get? What are the equations you are trying to solve?
 
haha ENG1091? fx=2y^2-2xy+6-x^2 and fy=2y^2+4xy-6+x^2 n then you can put the two equations in quadratic form i.e. fx=(2)y^2-(2x)y+(6-x^2), where a=2, b=-2x and c=6-x^2. Then use the quadratic formula and u should get the value for x and then plug it into the equation u got after using the quadratic formula get y...
 
Last edited:
I have the partial derivatives:

fx(x,y)=(2y^2-2xy-x^2+6)/(x^2+2y^2+6)^2

fy(x,y)=(-2y^2-4xy+x^2+6)/(x^2+2y^2+6)^2

Now, for a stationary point, both these equations are equal to zero.

I then have to solve these simultaneously to find values for x, which will in turn give me values for y

snakeskin - I can see how you've put them in quadratic form and I tried to follow your directions with the quadratic formula, but I got lost. Perhaps I'm doing it wrong.
 
umm yeah u have to use the quadratic formula for both fx=0 and fy=0 and then u let them equal each other n then u'll have to simplify it which gets a bit tricky. if u use the quadratic formula for fx=0 u should get y=(x +/- (3x^2-12)^0.5)/2 and y=(-2x +/- (6x^2+12)^0.5)/2 for fy=0. When you let (x +/- (3x^2-12)^0.5)/2 = (-2x +/- (6x^2+12)^0.5)/2 you can simplify it to 3x= +/-(6x^2+12)^0.5 -/+(3x^2-12)^0.5. Here I separated the +/- so i get 2 equations to make it easier to handle i.e. 3x= +(6x^2+12)^0.5 -(3x^2-12)^0.5 and 3x= -(6x^2+12)^0.5 +(3x^2-12)^0.5. Now you have to square both sides of the equation and u should get (3x^2-12).(6x^2+12)=0 for both equations n from there u just plug the x value into the equation for y n that should be it... well that's what i did anyways
 
My first reaction to snakeskin's response was that it couldn't possibly be right- the derivative of a fraction is not a polynomial! But then I realized that he had discarded the (unnecessary) denominator.

You have
fx(x,y)=(2y^2-2xy-x^2+6)/(x^2+2y^2+6)^2= 0
and fy(x,y)=(-2y^2-4xy+x^2+6)/(x^2+2y^2+6)^2= 0 and the first thing you can do is multiply on both sides by the denominators to get 2y^2- 2xy- x^2+ 6= 0 and -2y^1- 4x+ x^2+ 6. Adding those two equations gives -2xy- 4x+ 6= 0 so x(2y+4)= 6 or x(y+ 2)= 3. You could then solve x= 3/(y+ 2) and replace x in either one of the first equations by that. For example, the first equation becomes 2y^2- 6y/(y+ 2)- 9/(y+2)^2+ 6= 0.

Multiplying by (y+ 2)^2 gives 2y^2(y^2+ 4y+ 4)- 6y(y+2)- 9+ 6(y^2+ 4y+ 4)= 0 which is the same as 2y^4+ 8y^3+ 8y^2- 6y^2- 12y- 9+ 6y^2+ 24y+ 24= 0 or 2y^4+ 8y^3+ 8y^2+ 12y+ 15= 0
 
HallsofIvy said:
Adding those two equations gives -2xy- 4x+ 6= 0 so x(2y+4)= 6 or x(y+ 2)= 3. You could then solve x= 3/(y+ 2) and replace x in either one of the first equations by that. For example, the first equation becomes 2y^2- 6y/(y+ 2)- 9/(y+2)^2+ 6= 0.

Multiplying by (y+ 2)^2 gives 2y^2(y^2+ 4y+ 4)- 6y(y+2)- 9+ 6(y^2+ 4y+ 4)= 0 which is the same as 2y^4+ 8y^3+ 8y^2- 6y^2- 12y- 9+ 6y^2+ 24y+ 24= 0 or 2y^4+ 8y^3+ 8y^2+ 12y+ 15= 0
I got 12-6xy=0 when I added the two equations together. Following the method, I got y^4 + y^2 - 2 = 0.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
2
Views
1K
Replies
4
Views
1K