Munkres Chapter 5: Problem involving the Tychonoff Theorem

  • Context: Undergrad 
  • Thread starter Thread starter facenian
  • Start date Start date
  • Tags Tags
    Munkres Theorem
Click For Summary

Discussion Overview

The discussion revolves around an exercise from Munkres' Chapter 5 concerning the Tychonoff Theorem, specifically focusing on properties of a collection of subsets of a space that satisfies the finite intersection property. Participants explore implications of the theorem and the assumptions required for certain claims, as well as the theorem's relevance in various mathematical contexts.

Discussion Character

  • Debate/contested
  • Technical explanation
  • Conceptual clarification

Main Points Raised

  • One participant suggests that parts (a) and (b) of the exercise are trivial consequences of a previous lemma, while part (c) may not be trivial under the assumption of only the T1 axiom.
  • Another participant provides a counterexample using the cofinite topology on the integers, arguing that the closure of infinite sets contradicts the claim regarding intersections.
  • Some participants discuss the relevance of the Tychonoff theorem, with one noting that they have never needed it in practice, particularly in cases involving infinitely many factors.
  • A later reply proposes a modification to the initial counterexample, suggesting that the maximal set should be defined with respect to open sets rather than just infinite sets.
  • One participant reflects on their experiences with the theorem in abstract analysis, noting its utility in proving certain embedding theorems and its connection to the axiom of choice.
  • Another participant mentions the theorem's application in providing proofs for the Banach-Alaoglu theorem and the existence of compactifications, indicating its importance in functional analysis.

Areas of Agreement / Disagreement

Participants express differing views on the necessity of the Tychonoff theorem and its implications, with some agreeing on the triviality of certain parts of the exercise while others challenge these views with counterexamples. The discussion remains unresolved regarding the assumptions needed for part (c) and the overall relevance of the theorem.

Contextual Notes

There are unresolved assumptions regarding the definitions of the sets involved and the implications of the T1 axiom versus the T2 axiom. The discussion also touches on the varying applicability of the Tychonoff theorem across different fields of mathematics.

facenian
Messages
433
Reaction score
25
TL;DR
Tychonoff Theorem
Hi,
In Chapter 5 Munkres proves the Tychonoff Theorem and after proving the theorem the first exercise is: Let ##X## be a space. Let ##\mathcal{D}## be a collection of subsets of ##X## that is maximal with respect to finite intersection property
(a) Show that ##x\in\overline{D}## for every ##D\in\mathcal{D}## if and only if every neighborhood of ##x## belongs to ##\mathcal{D}##.
(b) Let ##D\in\mathcal{D}##. Show that if ##A\supset D##, the ##A\in\mathcal{D}##.
(c) Show that if ##X## satisfies the ##T_1## axiom, there is at most one point belonging to ##\bigcap_{D\in\mathcal{D}}\overline{D}##

(a) and (b) are trivial consequences of the lemma 37.2 proven before the Tychonoff Theorem's proof. On the other hand, (c) would be of the same level of triviality if ##T_2## was assumed, however, as written only ##T_1## is assumed.

Could it be just a Typo? or the problem can be solved assuming only ##T_1##. Any comments or help will be appreciated.
 
Last edited:
Physics news on Phys.org
I think you are right. A simple counterexample, let ##X=\mathbb{Z}## with the cofinite topology. Then let ##\mathcal{D}## be the set of all infinite subsets. Every finite intersection is nonempty, and if you include any finite set then you can get a trivial intersection of that set with its complement, so this is a maximal collection. The closure of every infinite set is ##X##, so
$$\bigcap_{D\in \mathcal{D}} \overline{D}=X$$
Which contradicts the claim.
 
  • Like
Likes   Reactions: facenian and Infrared
This question reminds me that I have, as a practicing mathematician for over 40 years, never, ever, needed the Tychonoff theorem, at least not in the case of infinitely many factors. so to me, the interesting case is a finite product. even a normal human might come up with a proof in that case. just a remark, from a person rather ignorant of tychonoff/logic etc... but you might try it for a factors.
 
Office_Shredder said:
I think you are right. A simple counterexample, let ##X=\mathbb{Z}## with the cofinite topology. Then let ##\mathcal{D}## be the set of all infinite subsets. Every finite intersection is nonempty, and if you include any finite set then you can get a trivial intersection of that set with its complement, so this is a maximal collection. The closure of every infinite set is ##X##, so
$$\bigcap_{D\in \mathcal{D}} \overline{D}=X$$
Which contradicts the claim.
Excellent! However, I think it needs a slight modification. I believe we should take ##\mathcal{D}=\mathcal{F}##, i.e., take the maximal set with respect to the property of being open and with the finite intersection property. Not every two infinite sets have not an empty intersection. Thank you very much.
 
mathwonk said:
This question reminds me that I have, as a practicing mathematician for over 40 years, never, ever, needed the Tychonoff theorem, at least not in the case of infinitely many factors. so to me, the interesting case is a finite product. even a normal human might come up with a proof in that case. just a remark, from a person rather ignorant of tychonoff/logic etc... but you might try it for a factors.
I suppose Tychonoff's usefulness might depend on the fields of mathematics one is working in.
 
facenian said:
Excellent! However, I think it needs a slight modification. I believe we should take ##\mathcal{D}=\mathcal{F}##, i.e., take the maximal set with respect to the property of being open and with the finite intersection property. Not every two infinite sets have not an empty intersection. Thank you very much.

Agh, yes, I meant all the infinite sets in the topology. Obviously the other ones don't really exist 😆
 
@facenian: you got me thinking and wondering who uses it. It was taught to me by an abstract analyst (Lynn Loomis), and we did use it in that course to prove certain abstract embedding theorems. (You find a lot of bounded real valued functions on your space, and then regard those as coordinate functions on the product space of all their target intervals, sending each point of your space to the collection of all values at that point of all functions. I guess this is the starting point for classifying compactifications of a given completely regular space, which is pretty, i.e. choosing different collections of functions gives different embeddings, hence different compactifications. This kind of abstract stuff is not if much interest in the kind of more concrete and classical geiometry I do.) But then I found a paper reminding me it is equivalent to the axiom of choice, which I use all the time. So I guess to me it is an exotic, much less useful, version of AxCh! Thanks for the reminder that everything is interesting, to someone anyway.
 
  • Like
Likes   Reactions: facenian
mathwonk said:
This question reminds me that I have, as a practicing mathematician for over 40 years, never, ever, needed the Tychonoff theorem, at least not in the case of infinitely many factors. so to me, the interesting case is a finite product. even a normal human might come up with a proof in that case. just a remark, from a person rather ignorant of tychonoff/logic etc... but you might try it for a factors.
You can use it to give an easy proof of the Banach-Alaoglu theorem, which is absolutely fundamental in abstract functional analysis. And as you said, it can also be used to show that certain compactifications, such as the Stone–Čech compactification, exist.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
5K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K