MHB Music Freak's question at Yahoo Answers (Trace in the lnear group)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Group Music
AI Thread Summary
The discussion clarifies that GL(n, k) refers to the general linear group of n x n invertible matrices over a field k. It explains a key property of the trace function, stating that the trace of the product of two matrices is invariant under cyclic permutations. The proof shows that the trace of the matrix S is equal to the trace of the transformed matrix BSB^(-1) by applying this property. This confirms that Trace(S) equals Trace(BSB^(-1)) as requested. The explanation provides a concise proof for the original question posed by Music Freak.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

So if S is a square matrix of order n, and B is in GL(n,k) where B is invertible, and the
Trace(S) is equal to Trace(BSB^(-1)).I'm not sure what the GL(n,k) means...
Please help prove this. I know this is a short proof, but I can't seem to find it in my book.

Here is a link to the question:

Quick Proof about a Square Matrix? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Music Freak,

$GL(n,K)$ is the general linear group of degree $n$ that is, the set of $n\times n$ invertible matrices over the field $K$, together with the operation of ordinary matrix multiplication. There is a well known property: for all $M,N$ matrices of $K^{n\times n}$ we have $\mbox{tr }(MN)=\mbox{tr }(NM)$ so, $$\mbox{tr }(BSB^{-1})=\mbox{tr }((BS)B^{-1})=\mbox{tr }(B^{-1}(BS))=\mbox{tr }((B^{-1}B)S)=\mbox{tr }(IS)=\mbox{tr }S$$
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top