MHB Music Freak's question at Yahoo Answers (Trace in the lnear group)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Group Music
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

So if S is a square matrix of order n, and B is in GL(n,k) where B is invertible, and the
Trace(S) is equal to Trace(BSB^(-1)).I'm not sure what the GL(n,k) means...
Please help prove this. I know this is a short proof, but I can't seem to find it in my book.

Here is a link to the question:

Quick Proof about a Square Matrix? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Music Freak,

$GL(n,K)$ is the general linear group of degree $n$ that is, the set of $n\times n$ invertible matrices over the field $K$, together with the operation of ordinary matrix multiplication. There is a well known property: for all $M,N$ matrices of $K^{n\times n}$ we have $\mbox{tr }(MN)=\mbox{tr }(NM)$ so, $$\mbox{tr }(BSB^{-1})=\mbox{tr }((BS)B^{-1})=\mbox{tr }(B^{-1}(BS))=\mbox{tr }((B^{-1}B)S)=\mbox{tr }(IS)=\mbox{tr }S$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top