I have been working through John Lee's "Introduction to Smooth Manifolds" recently. I am having trouble visualizing the unit n-sphere as a manifold in its own right, i.e. without an ambient space. It seems impossible to visualize it without embedding it in Euclidean space. I mean, the unit sphere is defined as the set of points whose (Euclidean) distance from the origin (a point of [itex] \mathbb{R}^n [/itex] that is NOT on the sphere), is equal to 1. So it seems impossible/useless to speak about the sphere without embedding it first into Euclidean space. Could someone please clarify where I may be wrong in my thinking, and also elaborate on the issue for me? Thank you.(adsbygoogle = window.adsbygoogle || []).push({});

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# N-sphere as manifold without embedding

Loading...

Similar Threads for sphere manifold without |
---|

A Smooth extension on manifolds |

I Manifold with a boundary |

I Parallelizable Manifold |

A On the dependence of the curvature tensor on the metric |

I Arbitrariness of connection and arrow on sphere |

**Physics Forums | Science Articles, Homework Help, Discussion**