just a remark about embedding abstract manifolds. this is not at all difficult, and not as sophisticated as Whitney's theorems, which precisely bound the embedding dimension.
As suggested above, if f1,...,fj, is a covering set of charts, and if g1,...,gj is a corresponding partition of unity, then (f1g1,...,fjgj, g1,...,gj) embeds the (compact) manifold. qed.
Riemann may not have known exactly about partitions of unity, or even topological spaces, but I believe he would have understood at least intuitively, that one can extend a chart to a global function. This makes me wonder if there was ever actually any confusion as to whether embedded and abstract manifolds are the same, as it is hard to believe any expert could have missed this simple argument.
Or maybe it was believed, but an actual proof awaited the development of the necessary language? Or maybe it was the non -compact case that was more challenging? I note that Whitney also embeds his manifolds as analytic sub manifolds, but makes no mention in his introduction (to his 1936 Annals paper) that any instance of the general embedding result was previously known. I have not read the later sections, which require some privileged access.
According to wikipedia, Poincare' already defined local overlapping atlases on manifolds.
Aha: My search for the origin of partitions of unity turns up Whitney, in 1934. maybe that technical tool for extending functions was the key? Hard to believe Riemann would not have known this sort of thing, if only in his intuitive way.
well, the topological case seems covered by the tietze urysohn extension lemma and urysohn seems to have died in 1924, so I would think everyone knew a compact topological manifold embeds in Euclidean space well before Whitney.
here is a lecture note going through the easy construction of a partition of unity from urysohn's lemma, applied to embedding compact manifolds, but he makes it look as if there is possibly a little technical supplement needed to apply urysohn. It is really hard though for me to believe that the topological embedding theorem could have been considered news in 1936. Maybe the "smooth urysohn lemma", i.e. smooth PofU, was the new wrinkle, and the consequent smooth embedding theorem?
http://staff.ustc.edu.cn/~wangzuoq/Courses/21S-Topology/Notes/Lec15.pdf