I Natural direction of pushforwards and pullbacks

  • I
  • Thread starter Thread starter ergospherical
  • Start date Start date
  • Tags Tags
    Direction Natural
ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
Given a diffeo ##\phi : M \rightarrow M'## (and with ##f## a function on ##M'##), vectors ##X## can be "naturally" pushed forward with ##\phi_*## from ##T_{p}M## to ##T_{\phi(p)}M'## subject to ##\phi_{*}X(f) \bigg{|}_{\phi(p)} = X(\phi^* f) \bigg{|}_{p}##. And 1-forms ##\omega## are naturally pulled back from ##T^*_{\phi(p)}M'## to ##T^*_p M## subject to ##\langle \phi^* \omega, X \rangle \bigg{|}_{p} = \langle \omega, \phi_* X \rangle \bigg{|}_{\phi(p)}##.

Making use of the inverse ##\phi^{-1}: M' \rightarrow M##, I think it's possible to also push forward 1-forms (##\omega \mapsto \phi_* \omega##) subject to e.g. ##\langle \phi_* \omega, X \rangle \bigg{|}_{\phi(p)} = \langle \omega, {(\phi^{-1})}_* X \rangle \bigg{|}_p##. And similarly I think we can also pull back vectors (##X \mapsto \phi^* X##) subject to e.g. ##\phi^* X(f') \bigg{|}_p = X({(\phi^{-1})}^* f') \bigg{|}_{\phi(p)}##, where ##f'## is a function on ##M## [are these right?].

In any case my question is why do vectors seem to naturally be pushed forward, whilst 1-forms and functions seem too be naturally pulled back... is it simply a matter of definition? Thanks
 
Physics news on Phys.org
A tangent vector is naturally pushed forward since it is the tangent of a curve ##\gamma## in ##M## and ##\phi\circ\gamma## is then a curve in ##M’## whose tangent is the pushforward.
 
  • Like
Likes cianfa72, ergospherical and vanhees71
Intuitively in the general case in which ##\phi : M \rightarrow M'## is not injective we cannot define a pullback of a vector field from ##M'## to ##M## the same way we cannot define a pushforward of a scalar field (function) from ##M## to ##M'##.

In the latter case which would be the value of the function at the point P in ##M'## having as inverse image through ##\phi^{-1}## different values of the scalar field (function) defined on multiple points in ##M## ?
 
ergospherical said:
In any case my question is why do vectors seem to naturally be pushed forward, whilst 1-forms and functions seem too be naturally pulled back... is it simply a matter of definition? Thanks
I'd say for functions is quite clear, because it is just composing with the map. For dual objects it goes the opposite way. Since vectors evaluate on functions, they are pushed forward. One forms evaluate on vectors, so they are pulled back.
 
  • Like
Likes ergospherical
If you have a bijection, then you are automatically disposing of all directions. But bijection in this case means diffeomorphism, which is quite a strong condition.

Pullbacks and pushforwards are dual operators and their existence can be described by commutative diagrams. For short: one is the Jacobi matrix, the other one is its transpose.

Pushforwards are easier to visualize because we can imagine a vector, but not so much a 1-form. It's
$$
(\varphi_*(v))(f)=v(f \circ \varphi) \text{ versus } (\varphi^*\nu)(x) = \nu(\varphi(x))
$$

Your question is a bit like: What if I start with a smooth function ##f^*\, : \,M^*\longrightarrow N^*## on the dual spaces? But don't demand to work this out. I would get lost in directions. However, it's a legitimate setup.

I tried to sort it out here:
https://www.physicsforums.com/insights/pantheon-derivatives-part-iii/
but it is more about definitions than about the why's.
 
  • Like
Likes ergospherical and vanhees71
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top