Need example of a continuous function map cauchy sequence to non-cauchy sequence

Click For Summary
A continuous function from one metric space to another can fail to map a Cauchy sequence to a Cauchy sequence in the complex plane. An example provided is the function f(x) = 1/x, which is continuous on its domain R-{0}. The sequence {xn} = 1/n is a Cauchy sequence that converges to 0, but its image under f diverges, thus not forming a Cauchy sequence in the target space. The original poster seeks a similar example specifically within the context of complex metric spaces. The discussion highlights the nuances of continuity and Cauchy sequences across different metric spaces.
xsw001
Messages
34
Reaction score
0

Homework Statement



I need a example of a continuous function f:(X, d) -> Y(Y, p) does NOT map a Cauchy sequence [xn in X] to a Cauchy sequence of its images [f(xn) in Y] in the complex plane between metric spaces.

Homework Equations



If a function f is continuous in metric space (X, d), then it continuous at every point in X.

Definition of a sequence converges to a point in metric space:
If {xn} -> x, then for all e>0, there exists an N such that d(x, xn)<e, for all n<= N

Definition of Cauchy sequence in metric space:
- {xn} is a Cauchy sequence if for all e>0, there exists an N such that d(xn, xm)<e, for all n, m <= N
- Every convergent sequence in metric space is a Cauchy sequence.

The Attempt at a Solution



I have counterexample in mind in R but not complex plane in metric space though.

Let f:R-{0} -> R-{0} defined by f(x)= 1/x, so f(x) is continuous on all domain.
Let {xn} = 1/n, then {xn} converges to 0 and therefore is a Cauchy sequence in R–{0}, but its image f(xn) = 1/xn = 1/(1/n) = n diverges, therefore is NOT a Cauchy sequence.

But I need an example of a continuous function f:(X, d) -> Y(Y, p) does NOT map a Cauchy sequence [xn in X] to the Cauchy sequence of its images [f(xn) in Y] between complex planes in the metric spaces?

Any suggestions?
 
Physics news on Phys.org
1/x?

EDIT: nm i didnt read the whole post
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
9
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K