OK, I'll get to this soon, but first I want to ask a few more questions about how your own approach is supposed to work:
You can calculate the distance between the two in the final rest frame when twin2 finishes his acceleration given BT, a, and t, but it seems to me that even with this information your approach does not tell us who is older. As I said in post #186, if we are analyzing things from the perspective of the inertial frame where they are at rest after acceleration, then in this frame twin1 moves a distance of (c/a)*(cosh(a*BT/c) - 1) during his acceleration phase, after which he is at rest in this frame. Meanwhile we know that twin2 moves inertially for a
proper time of (c/a)*sinh(a*BT/c) + t before beginning to accelerate, and in this frame twin2 is moving at constant velocity v=c*tanh(a*BT/c) before beginning to accelerate, so the time in this frame before twin2 begins to accelerate must be gamma times the proper time, i.e. gamma*[(c/a)*sinh(a*BT/c) + t], and the distance twin2 covers in this time is just given by velocity*time, or gamma*c*tanh(a*BT/c)*[(c/a)*sinh(a*BT/c) + t]. Then during twin2's acceleration phase, twin2 will cover an additional distance of (c/a)*(cosh(a*BT/c) - 1). So, the total distance twin2 travels from the origin (the point where the two twins first separated) in this frame is:
gamma*c*tanh(a*BT/c)*[(c/a)*sinh(a*BT/c) + t] + (c/a)*(cosh(a*BT/c) - 1)
Whereas the total distance twin1 travels from the origin in this frame is:
(c/a)*(cosh(a*BT/c) - 1)
So, subtracting the second from the first shows that the final distance between them will be:
gamma*c*tanh(a*BT/c)*[(c/a)*sinh(a*BT/c) + t]
Since gamma is 1/sqrt(1 - v^2/c^2), we can plug in v=c*tanh(a*BT/c), showing that gamma = 1/sqrt(1 - tanh^2(a*BT/c)). And making use of the hyperbolic trig identities
here, we known tanh(x) = sinh(x)/cosh(x), so gamma = 1/sqrt(1 - sinh^2/cosh^2) = 1/[sqrt(1/cosh^2)*sqrt(cosh^2 - sinh^2)], and since another identity says that cosh^2 - sinh^2 = 1, this reduces to 1/sqrt(1/cosh^2) = cosh(a*BT/c). So with gamma = cosh(a*BT/c), the final distance between them can be rewritten as:
c*cosh(a*BT/c)*tanh(a*BT/c)*[(c/a)*sinh(a*BT/c) + t]
And again making use of the fact that tanh(x) = sinh(x)/cosh(x), this reduces to:
c*sinh(a*BT/c)*[(c/a)*sinh(a*BT/c) + t]
So if you plug in BT=0.5 years, a=2 light years/year^2, and t=5 years, this becomes:
sinh(1)*[sinh(1) + 5] = 1.1752011936438014*[1.1752011936438014 + 5] = 7.25710381376082 light years.
But even with the final distance known, can you calculate a numerical value for the final age of twin1?