I have been attempting to make the leap from AP Calc to more theory-based calculus by trying to solve problems. Unfortunately, there are no solutions to the book I'm using so I need some guidance. Here's the problem:(adsbygoogle = window.adsbygoogle || []).push({});

Let f: [0,1] -> (0,1) be continuous. Show that the equation

[tex] 2x - \int^{x}_{0}\ f(t)dt = 1 [/tex]

has one and only one solution in the interval [0,1].

My first instinct was to try the endpoints to support the claim. If x = 0, we find that 0 = 1, which is evidently not a solution. Trying x = 1, we get

[tex] \int^{1}_{0}\ f(t)dt = 1 [/tex]

which appears to be valid.

Noticing the form of the integral, I decided to differentiate both sides with respect to x, getting

[tex] 2 - f(x) = 0 \Rightarrow f(x) = 2 [/tex]

But [tex] f(x) = 2 [/tex] implies that the original equation becomes 2x - 2x = 0 = 1, which is clearly not a solution. Since we can choose any x in the interval (0,1) to reach this false conclusion, there is only one solution and it occurs at x = 1.

I'm pretty confident that the beginning of my proof justifies that x = 0 cannot be a solution and x = 1 is a solution. But I feel that my reasoning as to why there is no solution on (0,1) is faulty. But then again, my reasoning/method of attack could be entirely faulty.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Need some help discarding/tying together ideas

**Physics Forums | Science Articles, Homework Help, Discussion**