I Neutrino-Atom Elastic Scattering: Insights from Particle Physics

Rayan
Messages
17
Reaction score
1
What happens generally when a neutrino/anti-neutrino collides with a light vs heavy atom?

My guess is, since neutrinos have very low cross section, their interaction is weak and therefore it will be an elastic scattering! For example:

$$ \overline{\nu} + He^3 \rightarrow \overline{\nu} + He^3 $$

and

$$ \nu + C^{12} \rightarrow \nu + C^{12} $$

But since I'm new to Particle physics and trying to learn by my own I'm not very sure!
 
Physics news on Phys.org
Elastic scattering is always possible, inelastic reactions can be possible depending on the target nucleus and the neutrino energy. ##\nu + T \rightarrow {}^3He + e^-## is possible at any neutrino energy, for example, because tritium already has enough energy to decay even without neutrino.
 
  • Like
Likes dextercioby and topsquark
A few points.

We usually write nuclei as 50V..

Neutrinos and antineutrinos do different things. To a degree electron, muon and tau neutrinos do different things.

Interactions on matter can occur off a nuclear target or an electron target. The latter happens less often.

What you have drawn is called a "neutral current" event. They are less common than "charged current" events, when a neutrino comes in and a charged lepton goes out.
 
The neutrino was discovered in the interaction​
$${\bar\nu}+p\rightarrow n+e^+$$​
 
Thread 'Why is there such a difference between the total cross-section data? (simulation vs. experiment)'
Well, I'm simulating a neutron-proton scattering phase shift. The equation that I solve numerically is the Phase function method and is $$ \frac{d}{dr}[\delta_{i+1}] = \frac{2\mu}{\hbar^2}\frac{V(r)}{k^2}\sin(kr + \delta_i)$$ ##\delta_i## is the phase shift for triplet and singlet state, ##\mu## is the reduced mass for neutron-proton, ##k=\sqrt{2\mu E_{cm}/\hbar^2}## is the wave number and ##V(r)## is the potential of interaction like Yukawa, Wood-Saxon, Square well potential, etc. I first...
Back
Top