1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Neutron, proton collision problem

  1. Jan 2, 2013 #1
    The following problem appeared on the A2 Edexcel Physics unit 4 exam paper January 2012 question 18. The solution, as given by the exam board, is attached.

    Question:
    18. James Chadwick is credited with discovering the neutron in 1932.

    Beryllium was bombarded with alpha particles, knocking neutrons out of the beryllium atoms. Chadwick placed various targets between the beryllium and a detector. Hydrogen and nitrogen atoms were knocked out of the targets by the neutrons and the kinetic energies of these atoms were measured by the detector.

    (a) The maximum energy of a nitrogen atom wa found to be 1.2 MeV.

    Show that the maximum velocity of the atom is about 4 x 106 m/s.

    mass of nitrogen atom = 14u, where u = 1.66 x 10-27 kg


    Solution:
    The set up as I understand it is,
    alpha --> Be --> neutron --> target --> Ni or H --> detector

    v = sqrt(2(1.2x10-6x1.6x10-19)/(14x1.66x10-19)) = 4.06x10-6 m/s No problems here.

    Question
    (b)The mass of a neutron is Nu (where N is the relative mass of the neutron) and its initial velocity is x. the nitrogen atom, mass 14u, is initially stationary and is then knocked out of the target with a velocity, y, by a collision with a neutron.

    (i) Show that the velocity, z, of the neutron after the collision can be written as

    z = (Nx - 14y)/N​


    Solution:
    momentum before = momentum after

    Nux = 14uy - Nuz

    rearranging gives,

    z = (Nx - 14y)/N No problems here.

    Question
    (ii)The collision between this neutron and the nitrogen atom is elastic. What is meant by an elastic collision?

    Solution
    In an elastic collision the kinetic energy is conserved. No problems here.

    Question
    (iii) Explain why the kinetic energy Ek of the nitrogen atom is given by

    Ek = (Nu(x2 - z2)/(2)​


    Solution:
    Using conservation of kinetic energy,

    EK(n) = Ek(Ni) + Ek(n)

    (1/2)Nux2 = (1/2)14Nuy2 = (1/2)Nuz2

    y2 = (x2 - y2)/(14)

    Ek(Ni) = (1/2)14Nuy2

    = (1/2)(14Nu(x2 - z2)/14)

    = (Nu(x2 - z2)/(2)

    For this calculation to work, the mass of the Ni has to be 14Nu but in the question it is given as 14u. That is the first thing I don't understand.

    Question
    (c) The two equations in (b) can be combined and z can be eliminated to give

    y = (2Nx)/(N + 14)​


    Solution
    The question does not ask how this is done but I'd like to know and can't figure it out. I tried substituting

    z = (Nx - 14y)/(N) into Ek = (Nu(x2 - z2))/(2)

    and this gives,

    (2Ek)/(Nu) = x2 - ((Nx - 14y)/(N))2

    But this has an Ek in it, so I don't see how to get to the required y = (2nx)/(N + 14) This is the second problem I have, not understanding where this equation comes from.

    Question
    (i) The maximum velocity of hydrogen atoms knocked out by neutrons in the same experiment was 30 x 107 m/s. The mass of a hydrogen atom is 1u.

    Show that the relative mass N of the neutron is 1.


    Solution
    There is an error in the question here. Instead of 30 x 107 m/s it should 3.0 x 107 m/s.

    The equation given in the question applies to Nitrogen and can be rearranged to give

    2Nx = yNi(N + 14) = 4.1 x 106Ni(N + 14)

    yNi = 4.1 x 106 m/s. This is obtained from part (a).

    For hydrogen then

    2nx = yH(N + 1) = 3.0 x 107(N+1)

    These two equation can be combined giving,

    4.1 x 106Ni(N + 14) = 3.0 x 107(N+1)

    from which N can be solved

    N = (3 x 107-14 x 4.1 x 106)/(4.1 x 106 - 3 x 107)
    = 1.05 which is approximately 1

    Question
    (ii) This equation can not be applied to all collisions in this experiment. Suggest why.

    Solution
    As the atoms approach the speed of light their mass does not remain constant, it increases.
     

    Attached Files:

    Last edited: Jan 2, 2013
  2. jcsd
  3. Jan 2, 2013 #2

    haruspex

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    2016 Award

    Shouldn't that read:
    (1/2)Nux2 = (1/2)14uy2 + (1/2)Nuz2
    ?
     
  4. Jan 3, 2013 #3
    Neutron, Ni, H, collision problem

    Hi haruspex,

    Thanks for your reply. Looking back on this post I can't believe how many typos I've made.

    Yes you are correct it should read....

    18. (b) (iii)

    EK(n) = Ek(Ni) + Ek(n)

    (1/2)Nux2 = (1/2)14uy2 + (1/2)Nuz2

    14uy2 = Nu(x2 - z2)

    y2 = N(x2 - z2)/14

    Ek(Ni) = (1/2)14uy2

    = (1/2)(14uN(x2 - z2)/14)

    = Nu(x2 - z2)/(2)

    So that is correct then, thanks.

    Now if I could just figure out where they get the equation in part (c), I'd be happy.
     
    Last edited: Jan 3, 2013
  5. Jan 3, 2013 #4

    haruspex

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    2016 Award

    For c, you have two equations:
    Nx2=14y2+Nz2; Nz = Nx - 14y
    Just eliminate z between them.
     
  6. Jan 4, 2013 #5
    $$
    Nx^2=14y^2+Nz^2\\
    \mbox{and}\\
    Nz=Nx-14y\\
    \mbox{so,}\\
    z^2=\frac{(Nx-14y)(Nx-14y)}{N^2}\\
    =\frac{N^2x^2-28yNx+196y^2}{N^2}\\
    \mbox{substituting this into the first equation gives,}\\
    Nx^2=14y^2+N\left(\frac{N^2x^2-28yNx+196y^2}{N^2}\right)\\
    0=Ny^2-2yNx+14y^2\\
    2Nx=y(N+14)\\
    y=\frac{2Nx}{n+14}
    $$
    Thanks for your help,

    Shane
     
    Last edited: Jan 4, 2013
  7. Jan 4, 2013 #6
    blah
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Neutron, proton collision problem
  1. Proton collision (Replies: 5)

  2. Proton collision problem (Replies: 11)

Loading...