Newtonian limit of Schwarzschild metric

Click For Summary
SUMMARY

The discussion focuses on deriving the Newtonian limit of the Schwarzschild metric by computing the tt-component of the Einstein tensor and demonstrating its reduction to Newton's equation. The metric in question is given by ##ds^2 = (1-2\phi(r)) dt^2 - (1+2\phi(r)) dr^2 - r^2(d\theta^2 + sin^2(\theta) d\phi^2##, where ##|\phi(r)| \ll 1##. Participants emphasize the importance of calculating both the Ricci tensor and Ricci scalar to obtain the correct second derivatives necessary for the Einstein Field Equation (EFE). The relevant equation ultimately leads to Poisson's equation for the gravitostatic potential, ##\nabla^2 \phi (\mathbb{r}) = -\rho##.

PREREQUISITES
  • Understanding of General Relativity and the Einstein Field Equations (EFE)
  • Familiarity with the Schwarzschild metric and its components
  • Knowledge of the Ricci tensor and Ricci scalar
  • Basic grasp of gravitational potential and Poisson's equation
NEXT STEPS
  • Study the derivation of the Einstein Field Equations in detail
  • Learn about the Schwarzschild solution and its physical implications
  • Explore Carroll's lecture notes on General Relativity, particularly chapter 4
  • Investigate the relationship between the Ricci tensor, Ricci scalar, and gravitational potentials
USEFUL FOR

This discussion is beneficial for physicists, particularly those specializing in General Relativity, graduate students studying gravitational theories, and researchers exploring the classical limit of relativistic metrics.

dwellexity
Messages
25
Reaction score
0
If I am asked to show that the tt-component of the Einstein equation for the static metric
##ds^2 = (1-2\phi(r)) dt^2 - (1+2\phi(r)) dr^2 - r^2(d\theta^2 + sin^2(\theta) d\phi^2)##, where ##|\phi(r)| \ll1## reduces to the Newton's equation, what exactly am I supposed to prove?
 
Physics news on Phys.org
Compute the Einstein tensor for this metric and plug it into the Einstein Field Equation; take its 0-0 component; and show that the resulting equation reduces to Newton's equation.
 
I think it leads to Poisson's equation for the gravitostatic potential. ## \nabla^2 \phi (\mathbb{r}) = -\rho ##
 
PeterDonis said:
Compute the Einstein tensor for this metric and plug it into the Einstein Field Equation; take its 0-0 component; and show that the resulting equation reduces to Newton's equation.
I have got ##G_{tt} = - \frac{2(-1+2\phi)(\phi + 2 \phi^2 +r \phi')}{(r+2r\phi)^2}##
How do I proceed from here? I am getting a first derivative of ##\phi## instead of second derivative.
 
dwellexity said:
I have got ##G_{tt} = - \frac{2(-1+2\phi)(\phi + 2 \phi^2 +r \phi')}{(r+2r\phi)^2}##

Yes, this looks ok.

dwellexity said:
I am getting a first derivative of ##\phi## instead of second derivative.

Yes, but remember that the Einstein tensor has two pieces: ##G_{\mu \nu} = R_{\mu \nu} - \frac{1}{2} g_{\mu \nu} R##, where ##R_{\mu \nu}## is the Ricci tensor, and ##R## is the Ricci scalar. So the EFE is really ##R_{\mu \nu} - \frac{1}{2} g_{\mu \nu} R = 8 \pi T_{\mu \nu}##. You might try calculating the two pieces separately to see if there are second derivatives there.

Also, you might take a look at Carroll's online lecture notes on GR, chapter 4, which has a discussion of this calculation.
 
PeterDonis said:
Yes, but remember that the Einstein tensor has two pieces: ##G_{\mu \nu} = R_{\mu \nu} - \frac{1}{2} g_{\mu \nu} R##, where ##R_{\mu \nu}## is the Ricci tensor, and ##R## is the Ricci scalar. So the EFE is really ##R_{\mu \nu} - \frac{1}{2} g_{\mu \nu} R = 8 \pi T_{\mu \nu}##. You might try calculating the two pieces separately to see if there are second derivatives there.

I don't understand how this would affect anything. Even if Ricci tensor and Ricci Scalar have second derivatives, what ultimately matters is this particular sum.
 
dwellexity said:
Even if Ricci tensor and Ricci Scalar have second derivatives, what ultimately matters is this particular sum.

Not necessarily. Take a look at Carroll's notes. The short version: there is an alternate way of writing the EFE, which moves the trace term from the LHS to the RHS:

$$
R_{\mu \nu} = 8 \pi \left( T_{\mu \nu} - \frac{1}{2} g_{\mu \nu} T \right)
$$

For the case under discussion only the 0-0 component of this equation is significant, and only ##T_{00}## is significant in the trace ##T##.
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 43 ·
2
Replies
43
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 50 ·
2
Replies
50
Views
4K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 18 ·
Replies
18
Views
4K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K