MHB Nick's question at Yahoo Answers (Maclaurin series)

AI Thread Summary
The discussion focuses on finding the Maclaurin series for the function f(x) = x/(1-x^4). It establishes that for |t|<1, the series expansion of 1/(1-t) can be utilized. By applying this to f(x), the series is expressed as f(x) = x * (1/(1-x^4)), leading to the summation form. The resulting Maclaurin series is identified as the summation from n=0 to infinity of x^(4n+1), valid for |x|<1. This provides a clear solution to the original question posed by Nick.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

for f(x)= (x)/(1-x^4)

= summation from 0 to infinity:

Here is a link to the question:

Find the Maclaurin series? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello nick,

If $|t|<1$ we know that $\dfrac{1}{1-t}=\displaystyle\sum_{n=0}^{\infty}t^n$. Then, using the Algebra of series: $$f(x)=x\cdot\dfrac{1}{1-x^4}=x\sum_{n=0}^{\infty}(x^4)^n=\sum_{n=0}^{ \infty}x^{4n+1}\quad (|x|<1)$$ So, necessarily the Maclaurin series for $f(x)$ is $\displaystyle\sum_{n=0}^{\infty}x^{4n+1}.$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top