Nilpotent Elements of ##\mathbb{Z}/n\mathbb{Z}##

  • Thread starter Thread starter Bashyboy
  • Start date Start date
  • Tags Tags
    Elements
Click For Summary
SUMMARY

The discussion centers on the nilpotent elements of the ring ##\mathbb{Z}/n\mathbb{Z}##, specifically proving that an element ##\overline{a}## is nilpotent if and only if every prime divisor of ##n## is also a prime divisor of ##a##. Participants explore whether the cyclic subgroup generated by the product of prime factors of ##n##, denoted as ##\langle \overline{p_1 p_2 ... p_k} \rangle##, consists entirely of nilpotent elements, particularly when ##n = 72##. The conversation also clarifies the nature of nilpotent elements and the structure of subgroups within the ring.

PREREQUISITES
  • Understanding of nilpotent elements in ring theory
  • Familiarity with cyclic groups and subgroup structures
  • Knowledge of prime factorization and its implications in modular arithmetic
  • Basic concepts of additive and multiplicative groups in rings
NEXT STEPS
  • Study the properties of nilpotent elements in rings, focusing on ##\mathbb{Z}/n\mathbb{Z}##
  • Investigate the structure of cyclic groups and their subrings
  • Learn about the implications of prime factorization in modular arithmetic
  • Explore the relationship between ideals and subrings in ring theory
USEFUL FOR

Mathematicians, algebra students, and anyone interested in advanced topics in ring theory and modular arithmetic.

Bashyboy
Messages
1,419
Reaction score
5

Homework Statement


I just finished proving that ##\overline{a} \in \mathbb{Z}/n\mathbb{Z}## is nilpotent if and only if every prime divisor of ##n## is a prime divisor ##a##, and this lead me to wonder whether the cyclic subgroup ##\langle \overline{p_1 p_2 ... p_k} \rangle## be consist of all nilpotent elements, where ##p_1,...p_k## appear in the prime factorization of ##n##. This seems to be the case when ##n = 72##.

Homework Equations

The Attempt at a Solution


It seems that this would be an immediate corollary of the theorem to which I alluded. Is this right? Every element of ##\langle \overline{p_1 p_2 ... p_k} \rangle## is of the form ##\overline{x(p_1 p_2 ... p_k)}##, and it seems that every prime divisor of ##n## would be a divisor of ##x(p_1 p_2 ... p_k)##. Does this sound correct?
 
Physics news on Phys.org
Bashyboy said:

Homework Statement


I just finished proving that ##\overline{a} \in \mathbb{Z}/n\mathbb{Z}## is nilpotent if and only if every prime divisor of ##n## is a prime divisor ##a##, and this lead me to wonder whether the cyclic subgroup ##\langle \overline{p_1 p_2 ... p_k} \rangle## be consist of all nilpotent elements, where ##p_1,...p_k## appear in the prime factorization of ##n##. This seems to be the case when ##n = 72##.

Homework Equations

The Attempt at a Solution


It seems that this would be an immediate corollary of the theorem to which I alluded. Is this right? Every element of ##\langle \overline{p_1 p_2 ... p_k} \rangle## is of the form ##\overline{x(p_1 p_2 ... p_k)}##, and it seems that every prime divisor of ##n## would be a divisor of ##x(p_1 p_2 ... p_k)##. Does this sound correct?
It sounds a little bit confused. What is ##\overline{x(p)}##? And what does it mean for an element ##a\in\mathbb{Z}_n## to be nilpotent?
 
fresh_42 said:
It sounds a little bit confused. What is ¯¯¯¯¯¯¯¯¯¯x(p)x(p)¯\overline{x(p)}? And what does it mean for an element a∈Zna∈Zna\in\mathbb{Z}_n to be nilpotent?

I would take ##\overline{x(p)}## to be a congruence class in ##\mathbb{Z}/n \mathbb{Z}##, where ##x(p) = xp## is some multiple of ##p##. From my understanding, ##\overline{a} \in \mathbb{Z}/n \mathbb{Z}## if there is some ##m \in \mathbb{N}## such that ##\overline{a}^m = \overline{0}##, where ##\overline{a}^m = \overline{a^m}##. Is this wrong?
 
Yes, that's right. So you have ##n=p_1^{c_1}\cdot \ldots p_k^{c_k}##.
Now if you defined ##c:= max\{c_1, \ldots ,c_k\}##.
What is ##(x(p_1\cdot \ldots \cdot p_k))^c##? And what does it mean for the elements of your subgroup.

I don't really understand the rest under 3.) Since we are talking about nilpotent elements, I assume we are talking about rings. ##\mathbb{Z}_n## is a ring, so far so good. The only guaranteed group in a ring is the additive group. (Because e.g. ##3\cdot 24=0## in ##\mathbb{Z}_{72}##, multiplication is in general no group.)
So if you talk about subgroups, you have to mean according to addition. These groups however don't automatically inherit the multiplication structure of the ring they are from. Structures which do that are either subrings or ideals. This is why I don't understand, what you actually mean, esp. by ##x\cdot p##. Do you mean ##x## is a natural number and ##xp## is an abbreviation for ##p+p+\ldots +p## (##x## times)?

So the short answer to your question is probably, yes. (I just don't follow your argument. Try the one above (first 3 lines)).
 
fresh_42 said:
The only guaranteed group in a ring is the additive group.

I don't think this is true. I believe the units of a group form a multiplicative group.

fresh_42 said:
This is why I don't understand, what you actually mean, esp. by x⋅px⋅px\cdot p. Do you mean xxx is a natural number and xpxpxp is an abbreviation for p+p+…+pp+p+…+pp+p+\ldots +p (xxx times)?

Yes, I am taking ##x \cdot p = p + ... + p## (##|x|##-times). So would ##\langle \overline{p_1 p_2 ...,p_k} \rangle## form a subring? I will try to verify this in the meantime.
 
Bashyboy said:
I don't think this is true. I believe the units of a group form a multiplicative group.
O.k., this is true. The units of a ring form a group. But units are rather boring elements with respect to the ring structure.
Yes, I am taking ##x \cdot p = p + ... + p## (##|x|##-times). So would ##\langle \overline{p_1 p_2 ...,p_k} \rangle## form a subring? I will try to verify this in the meantime.
Yes, it has to be. I simply had difficulties to understand what you meant.
Say ##m:=p_1\cdot \ldots \cdot p_k \,\vert \, n##. Then ##n\mathbb{Z} \subseteq m\mathbb{Z}## is an ideal and thus ##m\mathbb{Z} / n\mathbb{Z} = \langle \overline{m} \rangle = \langle \overline{p_1 p_2 ...,p_k} \rangle## a ring.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
10K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K