MHB No problem, happy to help! (Glad to hear it)

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I want to check which of the following sequences converges and from those that don't converge I want to check if it has a convergent subsequence.
  1. $\displaystyle{1, 1-\frac{1}{2}, 1, 1-\frac{1}{4}, 1, 1-\frac{1}{6}, \ldots}$
  2. $\displaystyle{1, \frac{1}{2}, 1, \frac{1}{4}, 1, \frac{1}{6}, \ldots}$
  3. $\displaystyle{c_n=\frac{2n+5}{3-n}, \ n\in \mathbb{N}}$
  4. $\displaystyle{d_n=\frac{n^2+1}{n+1}, \ n\in \mathbb{N}}$
I have done the following:
  1. $\displaystyle{1, 1-\frac{1}{2}, 1, 1-\frac{1}{4}, 1, 1-\frac{1}{6}, \ldots}$

    We have that
    \begin{equation*}a_n=\left\{\begin{matrix}
    1 & \text{ for odd } n \\
    1-\frac{1}{n} & \text{ for even } n
    \end{matrix}\right.\end{equation*} For odd $n$, $n=2k+1$, we have that $1$ converges to $1$, so the limit of $a_{2k+1}$ is $1$.

    For even $n$, $n=2k$, we have that $1-\frac{1}{n}$ converges to $1$, so the limit of $a_{2k}$ is $1$. The only limit point of the sequence $(a_n)_{n\in \mathbb{N}}$ is therefore $1$. We have that the sequence is bounded, since $1$ is a constant, $|1|\leq 1$ and $\displaystyle{0<\frac{1}{n}\leq 1 \Rightarrow -1\leq -\frac{1}{n}<0\Rightarrow 0\leq 1-\frac{1}{n}<1}$. Since the sequence is bounded and has one limit point, it is convergent and the limit is $1$.
  2. $\displaystyle{1, \frac{1}{2}, 1, \frac{1}{4}, 1, \frac{1}{6}, \ldots}$

    We have that
    \begin{equation*}b_n=\left\{\begin{matrix}
    1 & \text{ for odd} n \\\
    \frac{1}{n} & \text{ for even } n
    \end{matrix}\right.\end{equation*}

    For odd $n$, $n=2k+1$, we have that $1$ converges to $1$,so the limit of $b_{2k+1}$ is $1$.

    For even $n$, $n=2k$, we have that $\frac{1}{n}$ converges to $0$, so the limit of $b_{2k}$ is $0$. The limit points of the sequence $(b_n)_{n\in \mathbb{N}}$ are therefore $1$ and $0$. So, the sequence $(b_n)_{n\in \mathbb{N}}$ diverges, since it approximates no number, because it is between $0$ and $1$. The divergent sequence has two convergent subsequences $b_{2k+1}, b_{2k}$.

    The subsequence $(b_{2k+1})_{k\in \mathbb{N}}$ is bounded and its only limit point is $1$. So, the subsequence $(b_{2k+1})_{k\in \mathbb{N}}$ converges $1$.

    The subsequence $(b_{2k})_{k\in \mathbb{N}}$ is bounded and its only limit point is $0$. So the subsequence $(b_{2k})_{k\in \mathbb{N}}$ converges to $0$.
  3. $\displaystyle{c_n=\frac{2n+5}{3-n}, \ n\in \mathbb{N}}$

    We have that \begin{equation*}\lim_{n\rightarrow \infty}c_n=\lim_{n\rightarrow \infty}\frac{2n+5}{3-n}=\lim_{n\rightarrow \infty}\frac{n\left (2+\frac{5}{n}\right )}{n\left (\frac{3}{n}-1\right )}=\lim_{n\rightarrow \infty}\frac{2+\frac{5}{n}}{\frac{3}{n}-1 }=\frac{2+ 0}{0-1 }=-2\in \mathbb{R}\end{equation*}

    So, the sequence $(c_n)_{n\in \mathbb{N}}$ converges to $-2$.
  4. $\displaystyle{d_n=\frac{n^2+1}{n+1}, \ n\in \mathbb{N}}$

    We have that\begin{equation*}\lim_{n\rightarrow \infty}d_n=\lim_{n\rightarrow \infty}\frac{n^2+1}{n+1}=\lim_{n\rightarrow \infty}\frac{n\left (n+\frac{1}{n}\right )}{n\left (1+\frac{1}{n}\right )}=\lim_{n\rightarrow \infty}\frac{n+\frac{1}{n}}{1+\frac{1}{n}}=\frac{\infty+0}{1+0}=\infty\notin \mathbb{R}\end{equation*}

    So, the sequence $(d_n)_{n\in \mathbb{N}}$ is not convergent. How can we check if it has convergent subsequence? (Wondering)

Is everything else correct? (Wondering)
 
Physics news on Phys.org
Hey mathmari! (Smile)

It all looks correct to me.

mathmari said:
We have that\begin{equation*}\lim_{n\rightarrow \infty}d_n=\lim_{n\rightarrow \infty}\frac{n^2+1}{n+1}=\lim_{n\rightarrow \infty}\frac{n\left (n+\frac{1}{n}\right )}{n\left (1+\frac{1}{n}\right )}=\lim_{n\rightarrow \infty}\frac{n+\frac{1}{n}}{1+\frac{1}{n}}=\frac{\infty+0}{1+0}=\infty\notin \mathbb{R}\end{equation*}

So, the sequence $(d_n)_{n\in \mathbb{N}}$ is not convergent. How can we check if it has convergent subsequence? (Wondering) )

Doesn't our limit calculation imply that however big we want a value of the sequence to be, we can find an $N$ such that for all $n>N$ each element $d_n$ of the sequence is bigger than that value? (Wondering)

In other words, there can be no convergent subsequence.
 
I like Serena said:
It all looks correct to me.
Doesn't our limit imply that however big we want a value of the sequence to be, we can find an $N$ such that for all $n>N$ each element $d_n$ of the sequence is bigger than that value? (Wondering)

In other words, there can be no convergent subsequence.

Ah ok! Thank you very much! (Yes)
 
Back
Top