MHB Nodes and weight of Gauss Quadrature

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :giggle:

Calculate the node $x_0$ and the weight $a_0$ of Gauss Quadrature so that $$\int_0^1w(x)f(x)\, dx\approx I_0(f)=a_0f(x_0)$$ where $w(x)=1+\sqrt{x}$.

I have done the following:

The Gauss quadrature formula with $(n + 1)=1$ node (i.e. $n=0$) integrates polynomials of degree $2n + 1=1$ exactly.
\begin{align*}\int_0^1w(x)\cdot 1\, dx=a_0 &\Rightarrow \int_0^1\left (1+\sqrt{x}\right )\cdot 1\, dx=a_0 \\ & \Rightarrow \int_0^1\left (1+\sqrt{x}\right )\, dx=a_0 \\ & \Rightarrow \int_0^1\left (1+x^{\frac{1}{2}}\right )\, dx=a_0 \\ & \Rightarrow \left [x+2x^{\frac{1}{2}+1}\right ]_0^1=a_0 \\ & \Rightarrow \left [x+2x^{\frac{3}{2}}\right ]_0^1=a_0 \\ & \Rightarrow 1+2 =a_0 \\ & \Rightarrow a_0 =3 \\ \int_0^1w(x)\cdot x\, dx=a_0\cdot x_0 &\Rightarrow \int_0^1\left (1+\sqrt{x}\right )\cdot x\, dx=3x_0 \\ & \Rightarrow \int_0^1\left (x+x\sqrt{x}\right )\, dx=3x_0 \\ & \Rightarrow \int_0^1\left (x+x^{\frac{3}{2}}\right )\, dx=3x_0 \\ & \Rightarrow \left [\frac{x^2}{2}+\frac{2}{3}x^{\frac{3}{2}+1}\right ]_0^1=3x_0 \\ & \Rightarrow \left [\frac{x^2}{2}+\frac{2}{3}x^{\frac{5}{2}}\right ]_0^1=3x_0 \\ & \Rightarrow \frac{1}{2}+\frac{2}{3} =3x_0 \\ & \Rightarrow \frac{7}{6} =3x_0 \\ & \Rightarrow x_0=\frac{7}{18} \end{align*}

Is that correct? Or if we say that it integrates polynomials of degree $1$ do we mean that $w(x)f(x)=1$ and $w(x)f(x)=x$ instead of $f(x)=1$ and $f(x)=x$ ?

:unsure:
 
Mathematics news on Phys.org
mathmari said:
Or if we say that it integrates polynomials of degree $1$ do we mean that $w(x)f(x)=1$ and $w(x)f(x)=x$ instead of $f(x)=1$ and $f(x)=x$ ?

Hey mathmari!

I believe it is indeed intended that $f(x)=1$ and $f(x)=x$. (Nod)

mathmari said:
$$ \int_0^1\left (1+x^{\frac{1}{2}}\right )\, dx=a_0 \Rightarrow \left [x+2x^{\frac{1}{2}+1}\right ]_0^1=a_0$$

If we take the derivative of $2x^{\frac{1}{2}+1}$, then we don't get $x^{\frac{1}{2}}$ do we? :oops:

mathmari said:
$$\int_0^1\left (x+x^{\frac{3}{2}}\right )\, dx=3x_0 \Rightarrow \left [\frac{x^2}{2}+\frac{2}{3}x^{\frac{3}{2}+1}\right ]_0^1$$

If we take the derivative of $\frac{2}{3}x^{\frac{3}{2}+1}$, then we don't get $x^{\frac{3}{2}}$ do we? :oops:
 
Klaas van Aarsen said:
If we take the derivative of $2x^{\frac{1}{2}+1}$, then we don't get $x^{\frac{1}{2}}$ do we? :oops:

If we take the derivative of $\frac{2}{3}x^{\frac{3}{2}+1}$, then we don't get $x^{\frac{3}{2}}$ do we? :oops:

Oh yes... :oops:

It should be:
\begin{align*}\int_0^1w(x)\cdot 1\, dx=a_0 &\Rightarrow \int_0^1\left (1+\sqrt{x}\right )\cdot 1\, dx=a_0 \\ & \Rightarrow \int_0^1\left (1+\sqrt{x}\right )\, dx=a_0 \\ & \Rightarrow \int_0^1\left (1+x^{\frac{1}{2}}\right )\, dx=a_0 \\ & \Rightarrow \left [x+\frac{1}{\frac{1}{2}+1}x^{\frac{1}{2}+1}\right ]_0^1=a_0 \\ & \Rightarrow \left [x+\frac{2}{3}x^{\frac{3}{2}}\right ]_0^1=a_0 \\ & \Rightarrow 1+\frac{2}{3} =a_0 \\ & \Rightarrow a_0 =\frac{5}{3}\approx 1.6667 \\ \int_0^1w(x)\cdot x\, dx=a_0\cdot x_0 &\Rightarrow \int_0^1\left (1+\sqrt{x}\right )\cdot x\, dx=\frac{5}{3}x_0 \\ & \Rightarrow \int_0^1\left (x+x\sqrt{x}\right )\, dx=\frac{5}{3}x_0 \\ & \Rightarrow \int_0^1\left (x+x^{\frac{3}{2}}\right )\, dx=\frac{5}{3}x_0 \\ & \Rightarrow \left [\frac{x^2}{2}+\frac{1}{\frac{3}{2}+1}x^{\frac{3}{2}+1}\right ]_0^1=\frac{5}{3}x_0 \\ & \Rightarrow \left [\frac{x^2}{2}+\frac{2}{5}x^{\frac{5}{2}}\right ]_0^1=\frac{5}{3}x_0 \\ & \Rightarrow \frac{1}{2}+\frac{2}{5} =\frac{5}{3}x_0 \\ & \Rightarrow \frac{9}{10} =\frac{5}{3}x_0 \\ & \Rightarrow x_0=\frac{27}{50}=0,54 \end{align*}
:geek:
 
mathmari said:
It should be:
:geek:
It looks correct to me now. (Nod)
 
Klaas van Aarsen said:
It looks correct to me now. (Nod)

Great! Thank you! 👏
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top