Nodes and weight of Gauss Quadrature

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Gauss Nodes Weight
Click For Summary

Discussion Overview

The discussion revolves around calculating the node $x_0$ and the weight $a_0$ of Gauss Quadrature for the integral $$\int_0^1w(x)f(x)\, dx$$ where $w(x)=1+\sqrt{x}$. Participants explore the implications of integrating polynomials of various degrees and the correctness of their calculations.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant calculates $a_0$ and $x_0$ using the Gauss quadrature formula and presents their steps, arriving at $a_0 = 3$ and $x_0 = \frac{7}{18}$.
  • Another participant questions whether the integration of polynomials of degree 1 refers to $w(x)f(x)=1$ and $w(x)f(x)=x$ instead of $f(x)=1$ and $f(x)=x$.
  • Subsequent posts involve participants correcting their earlier calculations, with one participant adjusting their result for $a_0$ to $\frac{5}{3}$ and recalculating $x_0$ to $\frac{27}{50}$.
  • There are repeated inquiries about the correctness of derivatives used in the integration steps, indicating uncertainty in the calculations.
  • Participants express agreement on the final calculations after corrections are made, but the initial disagreements highlight the complexity of the problem.

Areas of Agreement / Disagreement

While some participants agree on the final results after corrections, there are multiple competing views and uncertainties expressed throughout the discussion regarding the initial calculations and interpretations of the integration process.

Contextual Notes

Participants note potential issues with the derivatives used in their calculations and the assumptions made about the polynomials being integrated, which remain unresolved.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :giggle:

Calculate the node $x_0$ and the weight $a_0$ of Gauss Quadrature so that $$\int_0^1w(x)f(x)\, dx\approx I_0(f)=a_0f(x_0)$$ where $w(x)=1+\sqrt{x}$.

I have done the following:

The Gauss quadrature formula with $(n + 1)=1$ node (i.e. $n=0$) integrates polynomials of degree $2n + 1=1$ exactly.
\begin{align*}\int_0^1w(x)\cdot 1\, dx=a_0 &\Rightarrow \int_0^1\left (1+\sqrt{x}\right )\cdot 1\, dx=a_0 \\ & \Rightarrow \int_0^1\left (1+\sqrt{x}\right )\, dx=a_0 \\ & \Rightarrow \int_0^1\left (1+x^{\frac{1}{2}}\right )\, dx=a_0 \\ & \Rightarrow \left [x+2x^{\frac{1}{2}+1}\right ]_0^1=a_0 \\ & \Rightarrow \left [x+2x^{\frac{3}{2}}\right ]_0^1=a_0 \\ & \Rightarrow 1+2 =a_0 \\ & \Rightarrow a_0 =3 \\ \int_0^1w(x)\cdot x\, dx=a_0\cdot x_0 &\Rightarrow \int_0^1\left (1+\sqrt{x}\right )\cdot x\, dx=3x_0 \\ & \Rightarrow \int_0^1\left (x+x\sqrt{x}\right )\, dx=3x_0 \\ & \Rightarrow \int_0^1\left (x+x^{\frac{3}{2}}\right )\, dx=3x_0 \\ & \Rightarrow \left [\frac{x^2}{2}+\frac{2}{3}x^{\frac{3}{2}+1}\right ]_0^1=3x_0 \\ & \Rightarrow \left [\frac{x^2}{2}+\frac{2}{3}x^{\frac{5}{2}}\right ]_0^1=3x_0 \\ & \Rightarrow \frac{1}{2}+\frac{2}{3} =3x_0 \\ & \Rightarrow \frac{7}{6} =3x_0 \\ & \Rightarrow x_0=\frac{7}{18} \end{align*}

Is that correct? Or if we say that it integrates polynomials of degree $1$ do we mean that $w(x)f(x)=1$ and $w(x)f(x)=x$ instead of $f(x)=1$ and $f(x)=x$ ?

:unsure:
 
Physics news on Phys.org
mathmari said:
Or if we say that it integrates polynomials of degree $1$ do we mean that $w(x)f(x)=1$ and $w(x)f(x)=x$ instead of $f(x)=1$ and $f(x)=x$ ?

Hey mathmari!

I believe it is indeed intended that $f(x)=1$ and $f(x)=x$. (Nod)

mathmari said:
$$ \int_0^1\left (1+x^{\frac{1}{2}}\right )\, dx=a_0 \Rightarrow \left [x+2x^{\frac{1}{2}+1}\right ]_0^1=a_0$$

If we take the derivative of $2x^{\frac{1}{2}+1}$, then we don't get $x^{\frac{1}{2}}$ do we? :oops:

mathmari said:
$$\int_0^1\left (x+x^{\frac{3}{2}}\right )\, dx=3x_0 \Rightarrow \left [\frac{x^2}{2}+\frac{2}{3}x^{\frac{3}{2}+1}\right ]_0^1$$

If we take the derivative of $\frac{2}{3}x^{\frac{3}{2}+1}$, then we don't get $x^{\frac{3}{2}}$ do we? :oops:
 
Klaas van Aarsen said:
If we take the derivative of $2x^{\frac{1}{2}+1}$, then we don't get $x^{\frac{1}{2}}$ do we? :oops:

If we take the derivative of $\frac{2}{3}x^{\frac{3}{2}+1}$, then we don't get $x^{\frac{3}{2}}$ do we? :oops:

Oh yes... :oops:

It should be:
\begin{align*}\int_0^1w(x)\cdot 1\, dx=a_0 &\Rightarrow \int_0^1\left (1+\sqrt{x}\right )\cdot 1\, dx=a_0 \\ & \Rightarrow \int_0^1\left (1+\sqrt{x}\right )\, dx=a_0 \\ & \Rightarrow \int_0^1\left (1+x^{\frac{1}{2}}\right )\, dx=a_0 \\ & \Rightarrow \left [x+\frac{1}{\frac{1}{2}+1}x^{\frac{1}{2}+1}\right ]_0^1=a_0 \\ & \Rightarrow \left [x+\frac{2}{3}x^{\frac{3}{2}}\right ]_0^1=a_0 \\ & \Rightarrow 1+\frac{2}{3} =a_0 \\ & \Rightarrow a_0 =\frac{5}{3}\approx 1.6667 \\ \int_0^1w(x)\cdot x\, dx=a_0\cdot x_0 &\Rightarrow \int_0^1\left (1+\sqrt{x}\right )\cdot x\, dx=\frac{5}{3}x_0 \\ & \Rightarrow \int_0^1\left (x+x\sqrt{x}\right )\, dx=\frac{5}{3}x_0 \\ & \Rightarrow \int_0^1\left (x+x^{\frac{3}{2}}\right )\, dx=\frac{5}{3}x_0 \\ & \Rightarrow \left [\frac{x^2}{2}+\frac{1}{\frac{3}{2}+1}x^{\frac{3}{2}+1}\right ]_0^1=\frac{5}{3}x_0 \\ & \Rightarrow \left [\frac{x^2}{2}+\frac{2}{5}x^{\frac{5}{2}}\right ]_0^1=\frac{5}{3}x_0 \\ & \Rightarrow \frac{1}{2}+\frac{2}{5} =\frac{5}{3}x_0 \\ & \Rightarrow \frac{9}{10} =\frac{5}{3}x_0 \\ & \Rightarrow x_0=\frac{27}{50}=0,54 \end{align*}
:geek:
 
mathmari said:
It should be:
:geek:
It looks correct to me now. (Nod)
 
Klaas van Aarsen said:
It looks correct to me now. (Nod)

Great! Thank you! 👏
 

Similar threads

Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
6
Views
2K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K