Nodes and weight of Gauss Quadrature

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Gauss Nodes Weight
Click For Summary
SUMMARY

The discussion focuses on calculating the node $x_0$ and the weight $a_0$ for Gauss Quadrature using the weight function $w(x) = 1 + \sqrt{x}$. Initially, the calculations led to $a_0 = 3$ and $x_0 = \frac{7}{18}$. However, after further analysis and corrections, the final values were established as $a_0 = \frac{5}{3}$ and $x_0 = \frac{27}{50}$. The participants clarified the integration of polynomials and the correct interpretation of the weight function in the context of Gauss Quadrature.

PREREQUISITES
  • Understanding of Gauss Quadrature
  • Knowledge of definite integrals
  • Familiarity with polynomial functions
  • Basic calculus, including differentiation and integration techniques
NEXT STEPS
  • Study the derivation of Gauss Quadrature rules for higher-order nodes and weights
  • Explore the application of Gauss Quadrature in numerical integration
  • Learn about different weight functions in numerical methods
  • Investigate error analysis in numerical integration techniques
USEFUL FOR

Mathematicians, numerical analysts, and students studying numerical methods for integration, particularly those interested in Gauss Quadrature and its applications in computational mathematics.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :giggle:

Calculate the node $x_0$ and the weight $a_0$ of Gauss Quadrature so that $$\int_0^1w(x)f(x)\, dx\approx I_0(f)=a_0f(x_0)$$ where $w(x)=1+\sqrt{x}$.

I have done the following:

The Gauss quadrature formula with $(n + 1)=1$ node (i.e. $n=0$) integrates polynomials of degree $2n + 1=1$ exactly.
\begin{align*}\int_0^1w(x)\cdot 1\, dx=a_0 &\Rightarrow \int_0^1\left (1+\sqrt{x}\right )\cdot 1\, dx=a_0 \\ & \Rightarrow \int_0^1\left (1+\sqrt{x}\right )\, dx=a_0 \\ & \Rightarrow \int_0^1\left (1+x^{\frac{1}{2}}\right )\, dx=a_0 \\ & \Rightarrow \left [x+2x^{\frac{1}{2}+1}\right ]_0^1=a_0 \\ & \Rightarrow \left [x+2x^{\frac{3}{2}}\right ]_0^1=a_0 \\ & \Rightarrow 1+2 =a_0 \\ & \Rightarrow a_0 =3 \\ \int_0^1w(x)\cdot x\, dx=a_0\cdot x_0 &\Rightarrow \int_0^1\left (1+\sqrt{x}\right )\cdot x\, dx=3x_0 \\ & \Rightarrow \int_0^1\left (x+x\sqrt{x}\right )\, dx=3x_0 \\ & \Rightarrow \int_0^1\left (x+x^{\frac{3}{2}}\right )\, dx=3x_0 \\ & \Rightarrow \left [\frac{x^2}{2}+\frac{2}{3}x^{\frac{3}{2}+1}\right ]_0^1=3x_0 \\ & \Rightarrow \left [\frac{x^2}{2}+\frac{2}{3}x^{\frac{5}{2}}\right ]_0^1=3x_0 \\ & \Rightarrow \frac{1}{2}+\frac{2}{3} =3x_0 \\ & \Rightarrow \frac{7}{6} =3x_0 \\ & \Rightarrow x_0=\frac{7}{18} \end{align*}

Is that correct? Or if we say that it integrates polynomials of degree $1$ do we mean that $w(x)f(x)=1$ and $w(x)f(x)=x$ instead of $f(x)=1$ and $f(x)=x$ ?

:unsure:
 
Physics news on Phys.org
mathmari said:
Or if we say that it integrates polynomials of degree $1$ do we mean that $w(x)f(x)=1$ and $w(x)f(x)=x$ instead of $f(x)=1$ and $f(x)=x$ ?

Hey mathmari!

I believe it is indeed intended that $f(x)=1$ and $f(x)=x$. (Nod)

mathmari said:
$$ \int_0^1\left (1+x^{\frac{1}{2}}\right )\, dx=a_0 \Rightarrow \left [x+2x^{\frac{1}{2}+1}\right ]_0^1=a_0$$

If we take the derivative of $2x^{\frac{1}{2}+1}$, then we don't get $x^{\frac{1}{2}}$ do we? :oops:

mathmari said:
$$\int_0^1\left (x+x^{\frac{3}{2}}\right )\, dx=3x_0 \Rightarrow \left [\frac{x^2}{2}+\frac{2}{3}x^{\frac{3}{2}+1}\right ]_0^1$$

If we take the derivative of $\frac{2}{3}x^{\frac{3}{2}+1}$, then we don't get $x^{\frac{3}{2}}$ do we? :oops:
 
Klaas van Aarsen said:
If we take the derivative of $2x^{\frac{1}{2}+1}$, then we don't get $x^{\frac{1}{2}}$ do we? :oops:

If we take the derivative of $\frac{2}{3}x^{\frac{3}{2}+1}$, then we don't get $x^{\frac{3}{2}}$ do we? :oops:

Oh yes... :oops:

It should be:
\begin{align*}\int_0^1w(x)\cdot 1\, dx=a_0 &\Rightarrow \int_0^1\left (1+\sqrt{x}\right )\cdot 1\, dx=a_0 \\ & \Rightarrow \int_0^1\left (1+\sqrt{x}\right )\, dx=a_0 \\ & \Rightarrow \int_0^1\left (1+x^{\frac{1}{2}}\right )\, dx=a_0 \\ & \Rightarrow \left [x+\frac{1}{\frac{1}{2}+1}x^{\frac{1}{2}+1}\right ]_0^1=a_0 \\ & \Rightarrow \left [x+\frac{2}{3}x^{\frac{3}{2}}\right ]_0^1=a_0 \\ & \Rightarrow 1+\frac{2}{3} =a_0 \\ & \Rightarrow a_0 =\frac{5}{3}\approx 1.6667 \\ \int_0^1w(x)\cdot x\, dx=a_0\cdot x_0 &\Rightarrow \int_0^1\left (1+\sqrt{x}\right )\cdot x\, dx=\frac{5}{3}x_0 \\ & \Rightarrow \int_0^1\left (x+x\sqrt{x}\right )\, dx=\frac{5}{3}x_0 \\ & \Rightarrow \int_0^1\left (x+x^{\frac{3}{2}}\right )\, dx=\frac{5}{3}x_0 \\ & \Rightarrow \left [\frac{x^2}{2}+\frac{1}{\frac{3}{2}+1}x^{\frac{3}{2}+1}\right ]_0^1=\frac{5}{3}x_0 \\ & \Rightarrow \left [\frac{x^2}{2}+\frac{2}{5}x^{\frac{5}{2}}\right ]_0^1=\frac{5}{3}x_0 \\ & \Rightarrow \frac{1}{2}+\frac{2}{5} =\frac{5}{3}x_0 \\ & \Rightarrow \frac{9}{10} =\frac{5}{3}x_0 \\ & \Rightarrow x_0=\frac{27}{50}=0,54 \end{align*}
:geek:
 
mathmari said:
It should be:
:geek:
It looks correct to me now. (Nod)
 
Klaas van Aarsen said:
It looks correct to me now. (Nod)

Great! Thank you! 👏
 

Similar threads

Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
6
Views
2K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K