MHB Nodes and weight of Gauss Quadrature

Click For Summary
The discussion focuses on calculating the node \( x_0 \) and weight \( a_0 \) for Gauss Quadrature with the weight function \( w(x) = 1 + \sqrt{x} \). Initially, \( a_0 \) was calculated as 3, but after further analysis, it was corrected to \( \frac{5}{3} \) by properly integrating the weight function. The node \( x_0 \) was also recalculated and found to be \( \frac{27}{50} \) or 0.54. Participants confirmed that the correct interpretation of the polynomial degree for integration involved \( f(x) = 1 \) and \( f(x) = x \). The final calculations were validated as correct.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :giggle:

Calculate the node $x_0$ and the weight $a_0$ of Gauss Quadrature so that $$\int_0^1w(x)f(x)\, dx\approx I_0(f)=a_0f(x_0)$$ where $w(x)=1+\sqrt{x}$.

I have done the following:

The Gauss quadrature formula with $(n + 1)=1$ node (i.e. $n=0$) integrates polynomials of degree $2n + 1=1$ exactly.
\begin{align*}\int_0^1w(x)\cdot 1\, dx=a_0 &\Rightarrow \int_0^1\left (1+\sqrt{x}\right )\cdot 1\, dx=a_0 \\ & \Rightarrow \int_0^1\left (1+\sqrt{x}\right )\, dx=a_0 \\ & \Rightarrow \int_0^1\left (1+x^{\frac{1}{2}}\right )\, dx=a_0 \\ & \Rightarrow \left [x+2x^{\frac{1}{2}+1}\right ]_0^1=a_0 \\ & \Rightarrow \left [x+2x^{\frac{3}{2}}\right ]_0^1=a_0 \\ & \Rightarrow 1+2 =a_0 \\ & \Rightarrow a_0 =3 \\ \int_0^1w(x)\cdot x\, dx=a_0\cdot x_0 &\Rightarrow \int_0^1\left (1+\sqrt{x}\right )\cdot x\, dx=3x_0 \\ & \Rightarrow \int_0^1\left (x+x\sqrt{x}\right )\, dx=3x_0 \\ & \Rightarrow \int_0^1\left (x+x^{\frac{3}{2}}\right )\, dx=3x_0 \\ & \Rightarrow \left [\frac{x^2}{2}+\frac{2}{3}x^{\frac{3}{2}+1}\right ]_0^1=3x_0 \\ & \Rightarrow \left [\frac{x^2}{2}+\frac{2}{3}x^{\frac{5}{2}}\right ]_0^1=3x_0 \\ & \Rightarrow \frac{1}{2}+\frac{2}{3} =3x_0 \\ & \Rightarrow \frac{7}{6} =3x_0 \\ & \Rightarrow x_0=\frac{7}{18} \end{align*}

Is that correct? Or if we say that it integrates polynomials of degree $1$ do we mean that $w(x)f(x)=1$ and $w(x)f(x)=x$ instead of $f(x)=1$ and $f(x)=x$ ?

:unsure:
 
Mathematics news on Phys.org
mathmari said:
Or if we say that it integrates polynomials of degree $1$ do we mean that $w(x)f(x)=1$ and $w(x)f(x)=x$ instead of $f(x)=1$ and $f(x)=x$ ?

Hey mathmari!

I believe it is indeed intended that $f(x)=1$ and $f(x)=x$. (Nod)

mathmari said:
$$ \int_0^1\left (1+x^{\frac{1}{2}}\right )\, dx=a_0 \Rightarrow \left [x+2x^{\frac{1}{2}+1}\right ]_0^1=a_0$$

If we take the derivative of $2x^{\frac{1}{2}+1}$, then we don't get $x^{\frac{1}{2}}$ do we? :oops:

mathmari said:
$$\int_0^1\left (x+x^{\frac{3}{2}}\right )\, dx=3x_0 \Rightarrow \left [\frac{x^2}{2}+\frac{2}{3}x^{\frac{3}{2}+1}\right ]_0^1$$

If we take the derivative of $\frac{2}{3}x^{\frac{3}{2}+1}$, then we don't get $x^{\frac{3}{2}}$ do we? :oops:
 
Klaas van Aarsen said:
If we take the derivative of $2x^{\frac{1}{2}+1}$, then we don't get $x^{\frac{1}{2}}$ do we? :oops:

If we take the derivative of $\frac{2}{3}x^{\frac{3}{2}+1}$, then we don't get $x^{\frac{3}{2}}$ do we? :oops:

Oh yes... :oops:

It should be:
\begin{align*}\int_0^1w(x)\cdot 1\, dx=a_0 &\Rightarrow \int_0^1\left (1+\sqrt{x}\right )\cdot 1\, dx=a_0 \\ & \Rightarrow \int_0^1\left (1+\sqrt{x}\right )\, dx=a_0 \\ & \Rightarrow \int_0^1\left (1+x^{\frac{1}{2}}\right )\, dx=a_0 \\ & \Rightarrow \left [x+\frac{1}{\frac{1}{2}+1}x^{\frac{1}{2}+1}\right ]_0^1=a_0 \\ & \Rightarrow \left [x+\frac{2}{3}x^{\frac{3}{2}}\right ]_0^1=a_0 \\ & \Rightarrow 1+\frac{2}{3} =a_0 \\ & \Rightarrow a_0 =\frac{5}{3}\approx 1.6667 \\ \int_0^1w(x)\cdot x\, dx=a_0\cdot x_0 &\Rightarrow \int_0^1\left (1+\sqrt{x}\right )\cdot x\, dx=\frac{5}{3}x_0 \\ & \Rightarrow \int_0^1\left (x+x\sqrt{x}\right )\, dx=\frac{5}{3}x_0 \\ & \Rightarrow \int_0^1\left (x+x^{\frac{3}{2}}\right )\, dx=\frac{5}{3}x_0 \\ & \Rightarrow \left [\frac{x^2}{2}+\frac{1}{\frac{3}{2}+1}x^{\frac{3}{2}+1}\right ]_0^1=\frac{5}{3}x_0 \\ & \Rightarrow \left [\frac{x^2}{2}+\frac{2}{5}x^{\frac{5}{2}}\right ]_0^1=\frac{5}{3}x_0 \\ & \Rightarrow \frac{1}{2}+\frac{2}{5} =\frac{5}{3}x_0 \\ & \Rightarrow \frac{9}{10} =\frac{5}{3}x_0 \\ & \Rightarrow x_0=\frac{27}{50}=0,54 \end{align*}
:geek:
 
mathmari said:
It should be:
:geek:
It looks correct to me now. (Nod)
 
Klaas van Aarsen said:
It looks correct to me now. (Nod)

Great! Thank you! 👏
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K