Noether current in quantum field theory

CSpring432
Messages
1
Reaction score
0
Homework Statement
Finding Noether current for the given action
Relevant Equations
$$J^{\mu}=\frac{\partial L(\phi, \partial (\phi))}{\partial (\partial _{\mu}(\phi)}(\delta_{\alpha}\phi)-F^{\mu}$$
Hi

Have been trying to solve the below question for a while, wondered if anyone could help.

Considering the action

$$S=\int -\frac{1}{2}\sum^2_{n,m=1} (\partial^{\mu}\phi_{nm}\partial_{\mu}\phi_{mn}+m^2 \phi_{nm} \phi_{mn})dx$$
under the transformation

$$\phi'=e^{\alpha}\phi e^{-\alpha}$$

Find the infinitesimal transformation and associated Noether current, where both ##\alpha## and ##\phi## are real 2x2 matrices.

I've managed to find what (I think) is the infinitesimal transformation:

$$e^{\alpha}\phi e^{-\alpha}\approx \phi-\phi \alpha +\alpha\phi+ \mathcal{O}(\alpha^2)$$
$$\therefore \delta_{\alpha}=[\alpha, \phi]$$

I am however, stumped for calculating the Noether constant. I know that I would have to use the formula

$$J^{\mu}=\frac{\partial L(\phi, \partial (\phi))}{\partial (\partial _{\mu}(\phi)}(\delta_{\alpha}\phi)-F^{\mu}$$

The issue, I think, is calculating the covariant derivatives since the phi terms are matrix elements. Any help would be really appreciated.
 
Physics news on Phys.org
I think that ##\phi## represents four real fields ##\phi_{nm}## and the first term in the Noether current is
$$\sum^2_{n,m=1}\frac{\partial L(\phi, \partial (\phi))}{\partial (\partial _{\mu}(\phi_{nm}))}(\delta_{\alpha}\phi_{nm})$$
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top