MHB Noetherian Modules - Bland Proposition 4.2.3

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Modules
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Paul E. Bland's book, "Rings and Their Modules".

I am trying to understand Chapter 4, Section 4.2 on Noetherian and Artinian Modules and need help with fully understanding Proposition 4.2.3, particularly assertion (2).

Bland's statement of Proposition 4.2.3 reads as follows:

View attachment 3733

Consider now Figure 1 below, showing module M with three submodules, $$M_1, M_2 $$and $$M_3$$ respectively:

View attachment 3734

As per Bland's assertion (2) of Proposition 4.2.3 above, the collection of submodules $$\{ M_1, M_2 \}$$ when ordered by inclusion, clearly has a maximal element, namely $$M_1$$.BUT ... ... what is the situation when we consider the collection $$\{ M_2, M_3 \}$$?Are both $$M_2$$ and $$M_3$$ respectively, each maximal elements in the collection $$\{ M_2, M_3 \}$$?

(as you may see from the above I am somewhat unsure as to how to view collections which include disjoint submodules!)

Can someone please help clarify the above issue?
Further to the above analysis, would the module M shown in Figure 1 be noetherian?

It seems to me that M would be noetherian since the only chains of submodules, namely

$$M_2 \subseteq M_1 \subseteq M_1 \subseteq M_1 \subseteq \ ... \ ... $$

and

$$M_3 \subseteq M_3 \subseteq M_3 \subseteq M_3 \subseteq \ ... \ ...
$$

clearly terminate ... ... Can someone please indicate whether this analysis is correct?
Peter
 
Physics news on Phys.org
Yes, you're right -- $M_2$ and $M_3$ are both maximal elements of $\{M_2,M_3\}$. This is because $M_2$ is not properly contained in any element of $\{M_2,M_3\}$, and similarly for $M_3$. The underlying principle here is that we're dealing with posets, and not particular linearly ordered sets. Therefore, when considering a collection of submodules of $M$, the sets in the collection need not be comparable. So you may find collections of submodules of $M$ that have maximal elements, but no greatest element, such as the case with $\{M_2,M_3\}$. If in your diagram, $M_1$, $M_2$, and $M_3$ are the only proper, nontrivial submodules of $M$, then indeed $M$ is Noetherian.
 
Euge said:
Yes, you're right -- $M_2$ and $M_3$ are both maximal elements of $\{M_2,M_3\}$. This is because $M_2$ is not properly contained in any element of $\{M_2,M_3\}$, and similarly for $M_3$. The underlying principle here is that we're dealing with posets, and not particular linearly ordered sets. Therefore, when considering a collection of submodules of $M$, the sets in the collection need not be comparable. So you may find collections of submodules of $M$ that have maximal elements, but no greatest element, such as the case with $\{M_2,M_3\}$. If in your diagram, $M_1$, $M_2$, and $M_3$ are the only proper, nontrivial submodules of $M$, then indeed $M$ is Noetherian.
Thank you for your help Euge, you are making my quest to understand algebra working by myself without the assistance of a University environment so much easier ...

Peter
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top